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Abstract

Einstein Equations aren’t hyperbolic because they are invariant under an invertible
change of 4-dimensional variables. A possible solution of this problem is to consider
a particular set of this 4-dimensional variables in order to reduce the number of the
unknowns appearing in the metric tensor. The choice of these variables depends on the
particular physical situation where we are working. In fact, in the right hand side of
Finstein Equations there is the energy-momentum tensor of the sources; if this is all
the matter contained in the Universe, then the problem becomes too complicated to
deal with. An approximation can be used in particular situations. For example here
the situation is considered of a polyatomic gas generating its own gravity field and suffi-
ciently far from the other matter, so as not to be affected by its influence on the metric
tensor. The isotropy of the Universe is imposed by using the Representation Theorems
jointly with another change of 4-dimensional variables so as to reduce the unknowns
appearing in the 10 components of the metric tensor to only 2 scalar functions. In this
way hyperbolic is achieved.

1 Introduction

In the article [1], the hyperbolicity of Einstein Equations have been studied by using
armonic coordinates and limiting to the case of Euler Equations for the matter. Here
we study this problem by using the isotropy and homogeneity of the universe and in
the case of a model for polyatomic gases with many moments. I think that the present
work also generalizes the recently published one [2].

Obviously, Einstein Equations aren’t hyperbolic because they are invariant under an
invertible change of 4-dimensional variables. The solution of this problem is to consider
a particular set of this 4-dimensional variables in order to reduce the number of the
unknowns appearing in the metric tensor. The choice of these variables depends on the
particular physical situation where we are working. In fact, Einstein Equations are
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where
Ry = 0,17, — 0,1, + I’gy aB — I‘ﬁa I'7s, (Riccei tensor),

R =g¢g"" R,,, (Curvature scalar),

1
I, = 3 9" (Ougur + Ovgur — Or gu) , (Christoffel’s symbols) .

Moreover, G is the cosmological constant and T}, the energy-momentum tensor of the
sources of the Gravity Field. So (1) is a system of 10 equations in the 10 unknows g,,, .
If we consider as sources all the matter contained in the Universe, then the problem
becomes too complicated to deal with (In particular for the expression of 7). An
approximation can be used in particular situations. For example, near a black hole we
can assume that the contribution of the black hole is predominant over all the others
and, then, the latter can be neglected; so in this case we can consider the Schwarzschild
metric as solution of Einstein Equations and consider only the field equations of the
matter but under the influence of the external gravitational field.

Another phisical situation is that of a polyatomic gas generating its own gravity field
and sufficiently far from the other matter, so as not to be affected by its influence on
the metric tensor. In this case T}, is the energy-momentum tensor of the polyatomic
gas.

We may consider also the case where the sources are all the matter contained in the
Universe but only if we assume that all the Universe behavies as a polyatomic gas (or
a monoatomic gas as a limiting case). In this case the results are valid only within the
limits imposed by this strong approximation.

In any case, the isotropy of the Universe can be easily imposed by using the Repre-
sentation Theorems; in fact, in this case and in the reference frame comoving with the
fluid, the unknown metric tensor g, depends only on the scalar 20 = ct (t is time and
c the light speed in vacuum) and on the vector z°. By applying the Representation
Theorems we see that

e Since ggo is a scalar, it can be expressed as a function of z° and of
2 2 2 .
s= @) + (@2 + (@2 i goo = goo (a0, ).

e Since gop; is a vector, it can be expressed as gg; = g1 (:):0, s) “ where g1 is a scalar
function.

e Since g;; is a symmetric tensor, it can be expressed as g;; = go (.ro, s) = +

g3 (330, s) dij, where g2 and g3 are scalar functions.

In this way we have only the 4 unknows ggo, g1, g2, g3 instead of all the 10 independent
components of g,,, and the metric tensor is

goo (CBO, 8) g1 (iBO, 5) %”
Gop = o : (2)
g1 (20, 5) & g2 (2%, s) 23 4 g3 (a0, ) 0y

Moreover, the line element is
552 = goo (d:co)Q +2¢1da’ds + ¢o (ds)2 + g3 5ijdl’idaj‘j. (3)

This is an isotropic and also a rotational invariant so respecting both the isotropy and
the homogeneity of the Universe.
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Since Einstein’s Equations are invariant under an invertible change of 4-dimensional
coordinates, we can use this property to furher reduce the number of the unknowns;
for example, we can change variables with the law

2= f(X0,8),

. L (4)
g (X008 &

where S = /X?X7J¢;; from which it follows s = g. In the next section we will prove
that a change of 4-dimensional coordinates of the type (4) can be found such that, in
the new coordinates the metric tensor takes the form

1 0
Gap = < X ) (5)
0 Gz (X, S) =% + G3(X°, 5) dy

which has the form (2) but with goo = 1, g1 = 0. In this way the unknowns functions
reduce to two. As an exercise, the case of the Schartzschild metric is considered.

In sect. 3 we will calculate the left hand side of Einstein Equations (1), while in sect. 4
we will exploit their right hand side. In sect. 5 we will study the hyperbolicity of eqs.
(1) and those for the polyatomic gas; we will see that some equations are consequences
of the others and of suitable boundary conditions. By eliminating these differential con-
straints, the remaining equations give an hyperbolic set of partial differential equations.
Moreover, in sect. 6 we will find the boundary values under which Einstein Equations
give as result the Friedmann-Robertson-Walker (FRW) metric for flat, open or closed
spacetime.

2 Reduction of the unknowns scalar functions
in the metric tensor
The line element with the change of 4-dimensional variables ¢ = x® (X*) becomes

dx® OxP

532:ga/3dx°‘dx5:GWdX”de with Guu:gaﬂmma (6)

and G, is the metric tensor in the new variables. In particular, we have

(%:M(%QZ gy 220 0a"0ah dak

0 X0 X0 9X0 0X0 9Xx0’

GOb:gooa—xoa—xO + gon <8$0 Ot + 027 6xh) +9hk8—xha—xk 7)
0X0 gXxb 0X09Xb  9XboXO X0 gXxb’
9z 90 oz 9zl ozl 0k

Gab =90 55z gxp T 29% 55 ax0 T I* Hxa gxb
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With the particular metric (2) and the change of variables (4), these expressions become

aFf \2 af o 9g \?°
Goo = goo (8—)?0) + 20 8—;08—)?0 + (g2 + 93) (8—)?0) , Gop = Gl
. of of Of dg af dg o
with - G1 =900 535 59 T 9 (as ax0 T axigs) Tlete)y

Xo X
SQ b + G304 with

9\ 2
G2 = goo (%) +291£

CQ

dg
9X0’

NS

N

Gab - GQ

99\’ 9> g9
+(92+93) ﬁ —gg§7 G3293§.

Q
CQ‘Q

(8)

We aim to prove that a change of variables 2% = x® (X*) exists such that Ggog = 1,
G1 = 0. The proof become easier if we firstly prove the following

LEMMA: “For any given value of g, expressed by (2), the functions F (z°, s),
G (.130, 5), Go (:UO, s), G (xo, s) exist such that

OF\?2 oG \?
QOO:(W) + (G2 + G3) (W) ;

OF OF 0G 0G
- 9
g1 = 833’0 8 + (G G3) Os Ox a..0° ( )
dF\? G G2 G?
92—(&) + (G2 + Gs) <E) — G5, g3=Gs 5"

Proof: Let us consider the first order quasi-linear partial differential equation in the
unknown 7 (xo, s):

( 877 an 2391

0
9s @) [(91)2 — oo (g2 +g3)} +n s I

[91 — n (92 + g3)] + 9155 "

8900 3 1 8900 1 28 (92+93)
T gt n(ete)| - gng g () 5 (90— ng)n—g5 "+

_ 3 1 2 8(92+g3)_ 3 0 (1 B 0
+77{900 3191+ §ﬂ(92+93)}T—(\/900) a0 Voo Bs VI0) -

(10)

We note that the coefficient [(91)2 — goo (g2 + g3)} isn’t zero because from (2) we have

det gog = (g3)° [goo (92 +g3) — (91)2} < 0. Moreover, we choose for this equation a
boarding condition satisfying the relation

g1+ \/(91)2 — goo (92 + 93) g1 — \/(91)2 — goo (92 + g3)
<n< , (11)
g2 + g3 g2 + g3
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so that, for continuity reason, it will be satisfied also in a neighbourhood of the initial
variety. After that, we find the function F' by integrating the equations

) lg00—7 g1

B!

dab V/n2(g2+93)— 20 91+g00

(12)
OF _  |goo—magl 91—1(g2+93)
Js 900=191 \/n2(ga+gs)—2ng1+goo

We note that n? (g2 +g3) — 2191 + goo > 0 as consequence of (11); moreover, by

calculating this expression in n = %0 it becomes

2
00
<ggl> (92 +93) — 900 <O,

so that goo — 17 ¢1 # 0 in the interval (11). Finally, the integrability condition on (12)
is nothing more than (10). Consequently, eq. (12) has certainly a solution F'.

Now we can find the function GG by solving the first order quasi-linear partial differential
equation

0G 0G
— 1
920~ Ths (13)
and consider for Go and G3 the expressions
2
92+ 93 — (%{) 52

G2+G — (aG)g ) G3:g3 <E> . (14)

Os

Now that we have all the ingredient, we can prove ours egs. (9); let us begin with (9);:
By using (12);, (14) and (13) we see that
e (2FY
g2 T~ g3 Js

OF\’ G\’ (900 —n91)°
2| +(G2+G = +n?
(3170) (G2 Ga) <3l‘°) 792+ 95) — 2091+ 900
where in the passage denoted by = (12)2 has been used. The result proves (9);.
Let us consider now (9)2: By using (12), (14) and (13) we see that
dF\>
92t 93— s

where in the passage denoted by = (12)2 has been used. The result proves (9)s.
Eq. (9)3 can be easily proven. in fact, by using (14) we see that

OF\? 9G\? G?
( ) + (G2 + G3) (> —03?292-

OF OF 0G 0G  (goo —ng1) 91 — 1 (g2 + g3)]
GOl Gyt Gy) S
(G2 3) O0s 020 n% (92 +93) — 2191 + goo

+n

020 Os

Os 0s

Finally, (9)4 is a direct consequence of (14)s. We prove now the

THEOREM 1: ”A change of 4-dimensional variables z% = z® (X*) exist such that
Goo=1,G1 =07
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To prove this theorem, let 20 = f (X 0 S), s =g (X o S) be the inverse functions
of

X0 =F (mo, s), S=aG (xo, s) with F' and G given in the Lemma. By derivation of
the composite functions, we obtain

_ of OF of 8G - dg OF dg 0G
l= 33050 + 55 020 1= 7555 + 585,
— of OF of 0G ’ _ 9dg OF dg G
0= %055 T 05 9s 0= 750520 T 5% oa0
From these relations we obtain
oF 2G| 71 oF 2G|t
of a0 920 oG of 920 020 oOF
X0 lor scl 0s’ 9S  lsr  sal| Os’
Ds Ds Ds Ds
oF 2G|t oF 2G|t
89 0 x0 90 0G ag 0 x0 0 x0 oF
8X0__ OF oG 5’9@0’ ﬁ_ OF oG 8:1?0
Ds Ds BDs Ds
By using these expressions, (8); becomes
oF  9G|7?
. 9z0  9ad dG\? 5, 0G 0G oG\ .
00 — o F 0 goo (%) - glmw + (92+93) (W) =1,
s s
where in the last passage eqs. (9) has been used. Similarly, (8)3 becomes
QF 2G| 72
G e 90 0G OF n oOF 0G N oF 0G
- OF oG J00 ds 0s g 0s 020 9181‘0 0s
Ds s
( + )8_F% _

where in the last passage eqs. (9) has been used. This completes the proof of the
Theorem.

As example of application of this method, let us consider the Schwarzschild metric
outside the mass M generating it and with spherical simmetry and without rotations

and charges; it can be found in eq. (12.62) on page 437 of [3], or in eq. (A.1) of [4]. It
reads

ﬁ, — (m1)2 , — (:cl)2 sin? 2 with F =1 — 2G—M

gap = diag |F (2') , — 2ol

where G is the gravitational constant. This is a particular case of the present eq.
(3) with g1 = 0, and ggo, g2 and g3 not depending of time. By applying the present
approach we have then only to find a transformation of 4-dimensional coordinates which
transforms ggg to 1. We will see this now. To this end, let us consider the solution 7 of
the first one of the following equations and, after that, a solution GG; of the second one:

o n 0
9O F 9ol ln’\/l?coshn

d coshnp 0 F ok
90 kG, oz \V—a M)
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By using these functions n and G, we see that the following equations are integrable
and give the functions f and g:

of of 1 | ag_/F dg _ coshnp
8m0_ﬁCOShn’8x1_\/ﬁsmhn’(?xo G smhn,axl—\/TGl.

From the above equations it follows that the following system is satisfied:

2 2
o (2 v (25) 0- 25 20 L 0000

0 20 0 20 020 ol 0x00xl’
1 df\? g \?
_ - (2L G, [ ==
= (o) o (o5
We also define G = — (.131)2, Gs = — (:cl)2 sin? X2, where z! is the expression com-
ing from the inverse of X = f (2%, z'), X! = g (2", 21). With the change of 4-

dimensional variables X0 = f (xo, xl), Xt =g (:c ) X? = 22, X3 = 23 for the
line element d s?> we then have

ds? =d (X°)° + G1d (X1)® + Gad (X2)? + Gad (X?)° =
2 2
<§{£}d 0 aajldml) + G d (59 d " ;glda:) — («M? d (2*)® -
() sin? 2 d (%)’ = Fd ()’ — d () — (o)’ d ()" -
(561)2 sin? 2% d (353)2 .

The expression at the end of the above expression is the line element for the above
Schwarzschild metric, So we have proved that with a transformation of 4-dimensional
variables it takes the form g,p = diag (1, G1, G2, G3).

Obviously, this was only an exercise because the original metric has already the diagonal
form and, moreover, doesn’t depend on z°, while in the new metric the advantage to
have 1 instead of ggg is canceled by the fact that it depends on XY. Moreover, this case
goes outside the scopes of the present article because it concerns a metric outside the
mass M generating it, so that the right hand side of Einstein Equations (1) is zero and
there is no coupling between the metric and the eventual polyatomic gas that generates
it. One could study the influence of this metric on a polyatomic gas gravitating around
a black hole; in this case the metric is an external field for the gas. In [4] Kremer
studied this case for a monoatomic gas; the generalization to a polyatomic gas may be
the object of a future article.

Coming back to the general treatment before the Schwarzschild example, if we put
ourselves from the beginning in the new coordinates, then (8) can be written as

1 0
ga@ = o . (15)
0 g2 (2%, 8) "L + g3 (20, s) &y

So the unknown functions reduce from the four gog, g1, g2, g3 to only two functions,
i.e., go and g3.
A further simplification is obtained by using spherical coordinates
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x1=scos V¥, wyg=ssin cosp, x3=ssin v sin .
In this case the line element becomes

552 = (da®)’ + Gy (ds)® + Gs [(d@‘})z + sin?9 (dgo)ﬂ ,
with G = go + g3, G3 = g3 s>. In this case the metric tensor takes the diagonal form
Jap = diag (1, Gy, G5, G sin? 19) , (16)

with G5 and G3 depending on z° and s.

3 Calculation of the left hand side of eq. (1)
with the metric (16) (coming from (5))

Let us begin with the Christoffel’s symbols; we can calculate them directly from their
definition (1)4 or with the shorter way indicated in [3], chapter 12.2, page 431. This
method can be summarized as follows:

Let us forget the framework in which we are working and consider a problem in the
context of Rational Mechanics: We start with = as lagrangian parameters and with
the Lagrangian

L = gap o

In this case the Lagrange equations become

2908 C P42 (0y gap) 7 ? — (0, gu) " x¥=0, which, contracted by ¢°® gives

[
LN J 5

° 1
x 4+ Mg7 ?27=0, with Mgv = 5950‘ (205 9gap — Oa g48) -
From this result we see that

v oA
Vi = M) -
Another interesting property which facilitates the calculations for the second term in
(1)2 is the following one:
Property: ”We have that

1
o, = 5(’% In |det gop| 7. (17)
Let us apply this method to the case where g, is given by g.g = diag (1, g1, 92, 93);

the expression (16) will be a consequence in the particular case g1 = Ga, g2 = Gj,
g3 = Gsin® . We find

10 :diag(o gt g _3093>
% ) ) )

2 2 7 2
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0 00 In|g1| 0 0
1 1 1 1
500 In[g1] 501 In|gy] 5 02 In[g1] 5 03 In|g1]
1 _
e 0 10,1 0192 0
5 02 n|gi| T 2g1
0 1051 0 T
0 0 3 00 In |g2] 0
0 —M 181 1n|gg| 0
5 292 2
Far = 1 1 1 1
200 In[gs] 701 In gy 302 In gy 303 Ings|
0 0 101 — %0
0 0 0 090 In |gs|
0 _%a 0 1o In |gs|
X 293 7 V1 3
Fr = 0 1
0 O _237932 532 ln|g3|

290 In|gs] 201 In|gs] 105 In|gs)| 305 In|gs|

where 0, denotes 8(:960"

Now we can calculate the Ricci Tensor (1), and find

3
1 1
Roo = — 5 0oo In [g19293] — — Z (0o In |gal)® . (18)
2 S
1 1
Ro1 = — 5601 In |gags| + 1 (01 In |g2g3|) (o In [g1])
1 1
= 7 (@0 In{g2]) (91 In |gaf) — 7 (80 In |gs[) (01 In [gs]) ,

15) 0 15, 1
Ry =— 0L 0o ( 2g1> — 03 ( 3g1> - 5311 In [g2g3] +

2 292 293

1 1 , 1 )
+ 7 (01 In [gag3|) (01 In |g1]) — 1 (01 In |go|)” — 1 (01 In |g3])” +

g1 2 g1 2 g1 2 o g1

IL (901 I (9,1 I (91 _ Q91501 _
+ 7 (o In |g1]) +492 (02 In |g1)” + 10 (03 In |g1]) 2 o In |g2g3]
0 0
291 32 ln |ggg3| — 3—9183 ln |ggg3| .

4 g9 493
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(01 In |g3]) (02 In |g1])

1
— 7 (0210 |gs]) (91 In [gs]) ,

=~ =

Ryp = — _312 In |gs| + = (82 In |g3) (01 In |g2|) +

Moreover, Rpo can be desumed by (18)2 by exchanging the indexes 1 and 2; similarly,
Rys can be desumed by (18)y by exchanging the indexes 1 and 3. In the same way R
and Rss can be desumed by (18)3 with a suitable change of indexes, while Ri3 and Ras
can be desumed by (18)4 with suitable changes of indexes.

Now we can calculate the curvature (1)s; taking into account that

1 1 1
the inverse matrix of g¢o3 = diag (1, g1, g2, g3) is ¢*? = diag (1, —, —, —) ,
91 92 93

we obtain

R R R
R = Ry + 11 i 22 n 33 .
g1 g2 g3

So we have now all we need to write the left hand side of Einstein Equation (1);. But we
don’t need to write all the components of this equation because they must be coupled
with those of the polyatomic gas which, for an N moments model, are

« = U, «@ = U, « 1P = " =4y Tty .
VaVe=0, VT =0, Vu AP b= [0=bn for n=2 N. (20

The first two of these equations are the conservation law of mass and that of energy-
momentum, respectively; they are contained in (20)3 for n = 0,1 but we have preferred
to write them separately for their importance. Moreover, V., denotes the covariant

derivative which for a generic tensor Tﬁl Wﬁn” i

B ﬂn — ﬂ /Bn BT Bl /BT I/Bﬁr-ﬁ-l /Bn
Va T“Yll “In = Oa T%l “Ym + Z F TVl Ym Z Favs 71 % 1YVs+1Ym *

(21)

(See eq. (10.26) On page 304 of [3]). The use of the covariant derivative is important
because the Ricci Tensor and the curvature satisfy the identity

V. (R — % R ") =0, so that from (1); it follows V,, T#” = 0; this fact suggests that
all the balance equations for the polyatomic gas must be expressed with the covariant
derivative. Moreover, since we have done some changes of 4-dimensional coordinates,
it is necessary that we use a derivative which does’t depend on these changes, as the
covariant derivative. More than that, we can use the following theorem

THEOREM 2: The following set of conditions are equivalent:

(Vo T =0,
VoT =0,
& (RO — B g0 = 81CG 705 only as boundary
RSB % P = 8_(7;1§ T8 conditions,
| Rab — %Qab: 82r_4GTab_

(22)
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PROOF: The implication = is obvious, To prove <= we note that from the identity
Va (R — % 9*%) = 0 and from the first equation in the right hand side of (22) it
follows V,, (RO‘B — %go‘ﬁ — 87CT—4GTO‘*B) =0, i.e.,

o (ROB _ ggoﬁ SWGTw) s (Raﬁ _ ggaﬁ 87TGTaﬁ) n

C C

R 87 G R 8t G
+ T2 <R5ﬁ - 5955 : T‘”) + 10, (RW - 59" - : TW) =0.

For 8 = b and for § = 0 these equations, by using the third equation in the right hand
side of (22), become respectively

R 8tG R 8t G
o (ROb _ 5901; 7CT T0b> + 9, <R0b . E901) 7CT TOb) +

R 8t G R 8t G
+2F?no (RmO_EQmO 7CT Tmo)JngO <R00_5900_ m TOO):(),

8 ( R® — Egoo _ 87TGTOO +0, (R® — Egao _ 87TGTa0 n
2 ct 2 A

R 87 G
+ ng <R50 _ 5950 _ 7CT T(SO) +

R 871G R 871G
+F80 <R00—§g00— 7CT T00>+2F210 <Rm0_§gm0 7CT Tm0>:0'

It follows that R0 — %goo — %QTOO =0, R — %gmo — 8—::4QTmO =0Va as

consequence of the second equation in the right hand side of (22). Jointly with the first
and third equation in the right hand side of (22), this result proves the left hand side

of (22).

This result is important because it shows that we must impose only the equations

VaVO=0, VTP =0, VAP P —[hbn for p=2 ... N,
(23)
Rab_ggabzﬁwb, fora,b=1,2,3.
C

The remaining equations of (1); must be imposed only as initial conditions. This is in
according with the general theory of constrained hyperbolic systems which have been
considered in [5]-[7].

For the sequel we remark that (23)4 is equivalent to Ry, — 5 R g = 8C4G T.p» because in
our metric we have gg; = 0. We note also that in [1] (which used armonic coordinates
and didn’t concern polyatomic gases) there were some equations to be leaved out and the
remaining one constitute an hyperbolic system. But it wasn’t proved that the equations
leaved out are consequences of the remaining ones and of the boundary conditions. We
don’t consider the possibility of exploiting this possibility because it is outside the scope
of the present article.
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In the present case, eq. (23)4 are

GQ 87TG

—= 0 Gs + F = T

G, 70 3+ At

Gs 1 1 8@ (24)
—— 0o G — 0o G —— 0 Gs +G = T:

5G, % 2+2 00 3+2G2 11G3 + A 122,

T33=T228111219, T2 =0, Ti3=0, Ty3=0,

where F' and G are explicit functions of Go, G3 and of their first order derivatives with
respect to ¥ and s. The first two of these equations allow to determinate G and Gs;
the other are constraints on the energy-momentum tensor, but they are automatically
satisfied because of the requirement of isotropy of the universe. As we have assumed
that g, has the decomposition (2) in the initial 4-dimensional variables of the reference
comoving with the fluid, then the same thing must be said for all the other quantities.
For example, 7% must have the decomposition

(@) et
Taﬁ - . )
Wed e (@0, 5) B 4 1 (o, 5) 0y

with

2
(t1 +1t2) (g2 + g3) + §t293=P+H'

(Definition of pressure and the dynamic pressure).

Wl

To see briefly how it becomes after the two changes of 4-dimensional variables, we may
consider the quadratic form

ox® OxP
Paxnr gxv

where in the right hand side we have used a generic change of 4-dimensional variables;

N
Togdx®da’ =T, dXHd X" =T ., d X"d X",

N
so, by expressing this quadratic form in the new 4-dimensional coordinates, then 7",
comes out automatically as the associated matrix. In particular, after our two changes
of 4-dimensional coordinates the energy momentum tensor takes the form

Tor  Tn 0 0
Tag = , (25)
0 0 Too 0
0 0 Ty sin? ¥

with explicit expressions of Tyg, To1, 111, T2 which we don’t report. So the conditions
(24)3_¢ are automatically satisfied. In similar way can be treated all the other tensors
appearing in the closure. But they aren’t necessary here because they will come out
automatically when we express them in terms of physical variables. These have been
found in [8]-[10] but only in the case of a Minkowsky metric; in the next section we will
find what changes with the present metric.
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4 The closure of the balance equations with the
present metric

We adopt for A1 @nt+1 [ the expressions which has been found in [8]-[10], i.e

—I—oo 7 =
A Ont1 — / / POl ... pont (1 + _) ¢(Z)dPdT,
3

a1t _ o 7 _

mnl

with the distribution function f given by

x al 1 Z\"
f =e€ "B ) X = Z )‘a1a2---o¢n palpOQ o -pan mn—l <1 * 2) , (27)

mc

where kg is the Boltzmann constant, m is the particle mass, Z is the contribution to
energy from internal modes and \,,...q, are Lagrange multipliers which are taken as
independent variables. The expression (26)2 was found in [11]. To express every thing
in terms of physical variables we need an inversion of variables; this was realized in
[8]-[10] but by considering a Minkowsky metric and by calculating the integrals in the
reference frame comoving with the fluid. In the present approach, the metric g, is an
unknown to be determined; moreover, in the reference frame comoving with the fluid
the metric was given by (2) but, after that, we made the two changes of 4-dimensional
variables (4) and that which uses polar coordinates. So, let us see the implications
of these 2 changes. To this end, let us recall from literature that under a change of
4-dimensional variables the left hand side of Einstein Equation transforms according to
the law

N 1 oXHF 90XV N oXHF oXV
uy Raﬁ — R af — TaB
! ( 2 Y > gz 98 1" bz P’

N
where the quantities (---) denote the expression of (---) after the change of the 4-

dimensional variables; moreover, the last implication is a consequence of (1);.
The same property must hold also for the other tensors A%t @n+1 [¥1% [n particular,

H
if in the initial comoving reference frame we have Vo= (pc, 0, 0, 0), then

H a_ 0o_ of 0 8f N _ of of
Vo dzx® =pcdx —pc<aX0dX 35’ — Vo= pc 8X0’8S’0’O )

From this relation we obtain

N N Of \?> 1 [0f\?
aB: 2 2 - [ YJ
Vs |(26)+ & (6]
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This relations show that, altough p seems apparently a scalar function, it isn’t invariant
and in our last 4-dimensional coordinates we are no more in a reference frame comoving
with the fluid. But we can define v from

af of

o5 - X0
1+ of \*, 1 (ar)? of \*, 1 (of 1+

\/ CZG \/(8)(0) + & (ﬁ) \/<8X0> + & (6_> \/ CZG
(28)
2 \—1/2

By calling (1 + C”?GQ) = I'(v), we have obtained that
N N v N NN
Us=Tw) (c,v,0,0), U*=T(v) C,G—,O,O , Va=P Ua

2

Similarly, equilibrium (denoted with the apex E) is defined as the state where A\ = \¥,
Mo = M Aoyiay, = O for n =2, .-+, N and we have T2? = SGLVevE —pgl. Tt
follows that

Vo Vi 1 N5 N
ple =Ty ZQﬁ,p=§(6—TZfﬁga5>,—>Pze=p26,
2 N
N p e N 1/(N e —e
e=el| 5| = IRy 2,P=§ e —e+3p)=p+ 5
/ 1L (0f
o/ () + 3 (56)

So also the energy density e and the pressure p aren’t invariant. More completely, at
equilibrium we have still (25) but with

v U2
T = (e +p)T0) —p. Tfi=(c+p)0) . T =I*() (ec—z—p@),
T2E2=—pG3.

Now we have to calculate again the expressions of e and p and not to simply use the

results of [8]-[10]. In what follows we will operate only in our last 4-dimensional variables
N
so that every thing will be referred to them and we will omit both the apex (---). But

it will be necessary to use the decomposition U, =T'(v) (¢, v, 0,0), V,=pU,.
For the sequel it will be useful to calculate also

1ot c teo 7z \" _
At _ _/%3/ fop g (14 ) p(T)dTdP,  (29)

mnl

where

_1_XE

_xe z
fe=¢ T, xp=mAF 4 AEpH <1+ 2).
mc

It follows that

dA%l...an_H _ ]:'; <Aa1 an+1d)\E + Aa1 an+2d)\gn+2) . (30)



On the hyperbolicity of a model for polyatomic gases in a gravitational field 231

This equation, written for n =0 is
Usry*2
d(pU™) = _kﬂ {pU‘“dAE + (6—2 + pho‘laz) d/\aEz] ,
B C

whose contraction with U,, allows to determine

d)\E:—k—Bd — —U‘”d)\E .
mp pc2

By substituting this in eq. (30), we find

1 em
d AR = AP~ d UYdA) - Lameneg\E
E E <P P pc?kp 7) kg An+2

Q1 On41

If we take p and )\E as independent variables, the coefficient of d p shows that A

is linear and homogeneos in the variable p, while the coefficient of d )\5 allows to deter-
mine

porranss _ kB OAF T e aieani o (31)

E oom 8>\gn+2 +p62 E

Thanks to this result, all the tensors A%l."a"“ are determined in terms of the previous
ones. Obviously, we must be careful and express everything in terms of p and )\5 .
Regarding the second one of these, we note that

\E = 23 NEL AL =pU = —2E_\E

v T /)\E)\Eé /)\E)\Eé , /)\(JSE)\EJ

As a test, let us consider eq. (31) for n = 0 and use the projector h®? = — g% 4 %Uﬁ
i.e.,

Y

To1e2

_kp 9A™ k
-5 E —2140‘1 U*? == — ~B Lgm% _ pc 7 )\%1 )\%2 +

kg
A = p TR Cumye,

)\E )\Eé
So we have obtained the correct expression for the coefficient of U*U*2, while the
other term gives

kp ? . . . . . mc?
p=— pT p — (as in the case with a Minkowsky metric), withy = T
B

(32)
We note that (31) doesn’t permit to obtain the expression of the energy e; so to find it
we must go back to the definition (26); for n = 0 and contracted by U,, and for n =1
and contracted by Uy, U,,; the effective calculations are performed in appendix and the
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result is

+ oo + oo . T 3 h
€ _ ['(v) {/ / e ’YF(IJch?) cosh S Ginh? s (COSh S sinh & +
0 0

pc? 3
-1
1 inh £ — h

+ = §-Ccoshe) mydsdz

71" (1 + ch) g

+oo p+oo ;

. / / eiwr(Hﬁ) cosh s inh? g (cosh2 s sinh & +

0 0 §

§sinh§+2[1+71“(1+%)coshs}M T
p— T3 1+m02 ©(I)dsdT,
v r (1 + ch)
(33)
where
~ T z ) v
= . (1+ ch) sinh sz.
From these relations it follows
lime =0
_z_ s
bm - 0+oo 0+o° e_'y(l—'—ch) €osh 5 Ginh? s cosh? s (1+ %) o(Z)dsdZ
2 T ’
v pe O+°o 0+°° 6_7(1+m) "% Sinh? s cosh s ©(Z)dsdT

as in the case [9] without the gravitational field.

We note that (31) holds also in the case without gravitational field (the passages here
followed don’t take into account this presence), so the expression of A%lma”“ is the
same. The only difference is the expression of e that now replaces that in eqs. (12)23
of [9] and (3)2 of [10]. So we obtain the expressions (14),(16) of [9].

We have now to explicitate eq. (25) according to the definitions

v
0=Uag" — ¢'=--q,

UT =eU’ + ¢ — ¢ =-niUsTO",

1
hap T =3 (p+10), <> = (h’; hg - ghaﬁh“”) o8,

from which it follows

uru”
2

2
TH — ¢ + (p + H)h,ul/ + _QU(,uqz/) + t<uy>3 .
C
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We find
T — (34)
el + (p+1I) (T% — 1) (e+p+INI? £+ 0 0
2
—a0% g +41 (1- ) +
-9 g_;, FQZ_; +<> +2 G3 F2U +<>
2,2 2
(e+p+IDI2 2+ ez — P+ g+ 0 0
2
- +grg _CQG)+ +2qc2G2 ’
+2 G2 —2 GAT2<>
+11
0 0 <> — B2 0
<> _ pgiﬂ
3
0 0 sin?
—2 @2 <> 42 @L< g 0
+2 G328 4<> —2 82 724> 0 0
t<0€6>3 — 2 2
0 0 t<> 0
t<>
0 0 sin? ¥

With these steps we have introduced 5 new independent variables, n, v, U,. To elimi-
nate this drawback we have to consider the system 0 = V*—Vg, 0 = U,Up (T"‘B — ng )
to obtain A—A\F, X 38 —)\g which now are substituted by the 5 new independent variables.
Another possibility is to use only physical variables and, in this case, all the Lagrange
multipliers must be expressed in terms of them. For the sake of simplicity, I consider

here only the 15 moments model for polyatomic gases as in [9]. In this case we have to
consider the system constituted by eqgs. (26); 2 and (26)3 contracted by U,UgUs of [9],

with A defined in (23) of [9], i.e, A = LU, UsU, (Aaﬁ7 - A%m). All the other steps

in [9] hold also in the present case and we find their same closure (35), i.e.,

1 3 N& N
AP = <p902 + —4A> UeUPUY + (p02 1 — — — A —3—11) heB )

4¢? Dy Dy
+ i_ UPUY + 3 N1 h@Bgm) 1 30st(<aB>spr)
C D3 5 D
(35)
%7 = — AUPUY 4 — NAAhﬁMr LN — 1A+
4c T 21 Dy T D4
L (s N3 U g 1 _105t<ﬁ7>3_
9172 Dg T

where all the coefficients are reported in [9].
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5 Hyperbolicity of the equations (23) with met-
ric (19)

Let us define S, = R, — %ng, - 82—4(; T,.; in this way egs. (23)4 become Sg, = 0.
We prove now the following

THEOREM 3: "The statement Sy, = 0 with a = b = 1,2,3, coupled with initial
conditions including

gs—gosin® 9 =0, 0 (g3 —g2sin® ¥) =0, 9091 =0,09391 =0, 0292 =0, (36)
0392 =0,00291=0,00391 =0, 00292=0, do392 =0,

implies that, also outside of the initial manifold, we have

g3—gasin? 9 =0,8,91=0,03g1=0,0292=0, 9392 =0, Sqp = Oalso witha # b”.
(37)

To prove this theorem it suffices to verify that it is effectiveely a solution of Sy, = 0
with ab = 11,12, 13,22, 23,33. This is true because for the solution satisfying (37);_5
we have

Sap=0 if a#b identically, for the expression (18)4 and similar; also for (25),
533 == 522 Sil’l2 19,

while S1; = 0 and S52 = 0 become equations for the determination of g; and gs.
CONSEQUENCES: For the study of hyperbolicity it suffices to consider only the equa-
tions (23)1_3 and the equations (23)4 only for a« = b = 1,2,3. Moreover, we have to
include (36) but only as initial conditions in the initial manifold.

We see that eqs. (23)4 for a = b are partial differential equations of the second order,
while (23);_3 are of first order. To reduce to a system all of the first order, we define

Onga=9s, — Opgdt=0.

Here the equations on the right hand side are the integrability conditions on those in
the left hand side. In this way the system (23);_3 and (23)4 with a = b can be written
as

Oa VO =H,0,T* = HP, 0, A" = H" | 8y 9o = g0, o g% — Opg =0,

g1 0 g1 0 g1 2 g1 3 1

— 0093 + =—0og3 + 02935 + 0395 = K

2 g9 2 2g; 2 29 7 29903 2 (38)
g2 0 g2 0 g2 1 g2 3 2

=00 g] + == 0y g3 + 0195 + 0397 = K=,

241 T g3 9375 9193 937 9 919 !
g3 0 g3 0 g3 2 g3 1 3

— 0093 + =—0ogi + O gy + ohgy = K7,

2g0 2 " 21 N T 2g10 Tt 2g1g P

where H, H?, H?Y, K', K? and K? are functions of p, v, U*, II, ¢, t§a6>, gy
The equations to study wave propagation can be obtained by substituting 0y with —u d
and 0 with ny d an unitary vector; the remaining part of each equation has to be put
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equal to zero. In our case these equations are

—wdV+ ngdVF =0, —udT% + ni,dT =0, —udA + ndA*7 =0,
—udg, =0, —ung—nbdggzO,

2 g1
no d +
290 293 g

3
nzdg, =0
2 9293 57 2g0g3 2

g2 0 g2 0 g2 1 g2 3
—ul|ly—dg+ 5 g)+ nidgs + ngdgy =0,
(291 Ph2gs 29193 7 29193 !

g3 0 g3 0 g3 2 g3 1
—u|=—"dgy+ =—d )+ nadg; + nidgy;, =0.
<2g2 AR YT 2g1ig0 20T 2gigy P

(39)

We note that the last 5 equations don’t depend on the other variables which are present
in (39);—3. They depend only on the 15 variables d g, d g5

If u = 0, the equations (39)4_5 give d g0 = 0; jointly with (39)¢_g they give 6 constraints
on the above mentioned 15 variables and we conclude that the eigenvalue u = 0 has at
least multiplicity 9.

If u # 0, the equations (39);_5 give dg, = 0, dg® = — b dgl. By substituting in
(39)6—s we obtain the system

291 2 _9n 2091 2 _a 0
2 g2 2 _g2 2 g2 2 _g2 0 _
Yagr +<n3) 249193 0 U5 +(n1> 29193 d92 =10
w29 4 (n2)2 93 N (n1)2 g3 0 d gs 0
2q1 249192 2 go 29192

So we obtain 6 other independent eigenvectors correspondind to the 6 real eigenvalues
which are the solutions of

g1 g2 gs

Since the sum ot the independent eigenvectors is 15, the hyperbolicity is proved for
(39)4—s. Regarding the role of (39);_3, we can take for them dg, = 0, dg% = 0;
in other words, they are the same of the case with g,g constant. So we can use the
results of [9] and say that they give other 15 linearly independent eigenvectors, So the
hyperbolicity is proved for all the set (39).

We note that, if we start from the metric (16) and do the same calculations, we find
that the hyperbolicity requirement isn’t satisfied. This is not a problem because, by
applying the results of [5], [6] and [7], we find that the metric (16) is a consequence
of the metric here used go3 = diag (1, g1, 92, g3) (see (19)) and of suitable initial
conditions.
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6 The Friedmann-Robertson-Walker (FRW) met-
ric

Let us see if it is possible to obtain as a particular solution the FRW metric g.5 =

diag (1, —ag, —a (r1)?, —a (x1)? sin? x2> with a = a(xg), g = m, a >0,
0 for flat space-time,
€= 1 for a closed space-time
—1 for open space-time.

With this metric the components of Einstein Equations (1), Sag = Rag — % JaB =
8rG T,.,, become
C

3o 1 4 1 1 81 G
So=—"-—+ —= — = T
00 2 o + azl g2 + - (x1)2 oy (x1)2 oA toos
1 1 (o) g 1 871G
S =—=a — — = T
11 59+ 59— @) + (@)’ A i
1)\2 !

x 1 1 1 8w G
522:( ) Sll‘f‘—l'l (——1> - (—-1)2 1 ng,
g 2 g g c

81 G

. 9
S33 = So2 sin” ¥ = = T3z,

Sap =0 for a#p = Tw,z=0 for a#p.

1\2
From the third one of these relations we see that S = ($g> St if and only if é -1
satisfies the differential equation

1 1 | 1
2 g g 1 — e (xh)

with e an arbitrary integration constant; so the above values of € are particular cases
with physical meaning.
By comparing with the expression (34) of Ty, we see that
e The result T12 = 0 calculated at equilibrium implies that v = 0. So a first initial
condition necessary to have the FRW metric is that in the initial manifold we
have v = 0; after that, for the hyperbolicity of the system we will have v = 0 also
outside of it.

e The result T2 = 0 outside of equilibrium implies that ¢ = 0, i.e., there is no heat

Aux.
(«1)° (1) 4
e The result Sop = 7 S11 implies that 0 = Tyy — 7 T =3a? (xl) t<~, i.e.,
there is no viscous deviatoric stress t<~ and we have
1T 11 11
To‘ﬁzdiag (e,p+ , Pt 5 szr — )
ag o (zl)” a(zh)” sin® ¢

So, v =0, g = 0, t<~ = 0 aren’t conditions dictated by physics, but only necessary
conditions in order to have the FRW metric otherwise we will obtain another met-
ric; physical experiments can only test if a particular polyatomic gas satisfies these
conditions.
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7 Conclusions

It has been proved here that, with the metric go5 = diag (1, g1, 92, 93) , 9o = ga (%),
Eintein Equations coupled with that of a polyatomic gas constitute a set of hyperbolic
equations. The conditions coming out from isotropy give a metric that is a particular
case of the previous one, but in this way hyperbolicity is lost; it is recovered only if
we study hyperbolicity with the metric g,3 = diag (1, g1, g2, g3) and impose only as
boundary conditions g3 = ¢s sin®¥, g1 = ¢ (xo, 1’1), g2 = g2 (a:o, xl).

Moreover, it has been found that only with the further boundary conditions v = 0,
g =0, t<~ = 0 we may obtain the Friedmann-Robertson-Walker metric.

Further investigations are possible; for example, the isotropy isn’t imposed in the arti-
cles on polyatomic gases with the Minkowsky metric and there is no reason to impose
it here. So the present article can be considered as a starting point to this further
development. Moreover, the case can be studied where the gravitational field operates
externally to the polyatomic gas, for example outside a black hole; this can be used
to estimate the radius of the bkack hole by observing how the gases orbiting it move.
Previous estimates not based on Extended Thermodynamics nor on polyatomic gases
have given results very different from the ”photo” that was made recently of one of
these black holes.

Acknowledgments: I thank prof. Tommaso Ruggeri of the University of Bologna
for stimulating my scientific curiosity on these topics.

A Appendix: Integrations of (29); to obtain the
energy density e

First of all we have to clarify our ideas about the integral factor d P because in

dp’ dp” dp’ dpﬁz de, while in [2] (after their eq. (62)) it was taken as

W \/—det gog. With both expressions we obtain the same result for the de-
termination of the fields. But, for accuracy reasons, in the next subsection we will
prove that the previous expression is the correct one. It is clear that the authors of [2]
forgive that d P doesn’t denote an integration over all the 4-dimensional space but over
an hypersurface of this space, the hypersurface with equation g,z p2pP = m2c2.

[9] it was taken as

A.1 The integral factor dP.

It is easier if we start with integrals over all #* in the following way: In [8] it was
defined

prY = p® (1 + #), in this way the integration factor can be used ¥ (7) d P* all over
the subspace of R* given by the 4-dimensional cone p*® p, o > m?c?. But, to integrate
over this cone, it is convenient to come back to the old variables. Since

N A N A N A
b lzpl <1+ 2) 7p2:p2 (1+ 2) 7p3:p3 <1+ 2) ) (40)
mc m cC mc

237



238 International Journal of Mathematics, Statistics and Operations Research

the Jacobian of the transformation is

op° z op° z op° z 0
8_1131 (1+ ch) 8_;;2 (1+ mcg) 8_23 (1+ ch) 77]1)02
T 1
(1+ ch) 0 0 T)’IL)CQ
J = = (41
T 2
0 (1+ ch) 0 77]302
I 3
0 0 (1+ mcz) 7711)02
1 7 \° o p° op° ap®
_ 14t 0 19p°  29P | 30P
mc2 ( + ch) ( prp opt TP 0 p? tp op?

Now the derivatives of ggg (po)2 + 2g0: p°p* + Gij p'p! = m2c® with respect to pF give

0

0
0 i p 0 i dp Pk
goop + 90iP') == =—gokP — Gk P = - =——
( ? >3pk J 8pk Po
op° op° ap° P°po + p* i m?c?
0 1 2 3
- P AP gt g P s = ——.
dpt 0 p? ap3 Do Do

So (41) gives

T 3
]| = (1+ —2> m.
mc Po

So, the integral factor ¥ (Z) d P* becomes
dptdp?dp?
Po

o(T) dz.

where we have chosen ¥(Z) = ¢(Z) (1 + -Z )_3 L

m c2 m
So we have found the same expression in [9] for the case of a Minkowsky spacetime; we

only have to pay attention to the fact that pg isn’t equal to p¥, but to gon p*.

A.2 Determination of V* and 7%°

Let us consider (29); for n = 0 contracted with U,, and (29); for n = 1 contracted
with % To calculate the integrals we use the change of variables

mec . mc . .
1 sinh s cos ¢, p* = sinh s sin 1) cos ¢,

p _
V—==Go -G

3:ﬁsmhssinwsin¢,wi‘ch s €0, +oo[ ¥ €0, n] ¢ €0, 2.
The Jacobian of the transformation is
J = mec” cosh s sinh? s sin ¢, and, moreover, we have p° =me¢ cosh s
— sin ¥ G3 v/~ G2 ’ ’ ’ ’

v .
— sinh s cos

\/—1—ch )

Uap® = m T (COSh s+
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The second one of these relations comes out from p®p? JaB = m2c?. Eqs (29); for n =0

contracted with U,, and (29); for n = 1 contracted with

Uaq U, .
—1°2 give pc? and e; after

calculating the integrals in d ¢ and in dv we can divide the second expression by the
first one and obtain (33).
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