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Abstract

Einstein Equations aren’t hyperbolic because they are invariant under an invertible
change of 4-dimensional variables. A possible solution of this problem is to consider
a particular set of this 4-dimensional variables in order to reduce the number of the
unknowns appearing in the metric tensor. The choice of these variables depends on the
particular physical situation where we are working. In fact, in the right hand side of
Einstein Equations there is the energy-momentum tensor of the sources; if this is all
the matter contained in the Universe, then the problem becomes too complicated to
deal with. An approximation can be used in particular situations. For example here
the situation is considered of a polyatomic gas generating its own gravity field and suffi-
ciently far from the other matter, so as not to be affected by its influence on the metric
tensor. The isotropy of the Universe is imposed by using the Representation Theorems
jointly with another change of 4-dimensional variables so as to reduce the unknowns
appearing in the 10 components of the metric tensor to only 2 scalar functions. In this
way hyperbolic is achieved.

1 Introduction

In the article [1], the hyperbolicity of Einstein Equations have been studied by using
armonic coordinates and limiting to the case of Euler Equations for the matter. Here
we study this problem by using the isotropy and homogeneity of the universe and in
the case of a model for polyatomic gases with many moments. I think that the present
work also generalizes the recently published one [2].
Obviously, Einstein Equations aren’t hyperbolic because they are invariant under an
invertible change of 4-dimensional variables. The solution of this problem is to consider
a particular set of this 4-dimensional variables in order to reduce the number of the
unknowns appearing in the metric tensor. The choice of these variables depends on the
particular physical situation where we are working. In fact, Einstein Equations are

Rµν − 1

2
Rgµν =

8πG

c4
Tµν , (1)

1



218 International Journal of Mathematics, Statistics and Operations Research

where

Rµν = ∂α Γ
α
µν − ∂ν Γ

α
µα + Γβ

µν Γ
α
αβ − Γβ

µα Γ
α
νβ , (Ricci tensor) ,

R = gµν Rµν , (Curvature scalar) ,

Γγ
µν =

1

2
gγτ (∂µ gντ + ∂ν gµτ − ∂τ gµν) , (Christoffel’s symbols) .

Moreover, G is the cosmological constant and Tµν the energy-momentum tensor of the
sources of the Gravity Field. So (1) is a system of 10 equations in the 10 unknows gµν .
If we consider as sources all the matter contained in the Universe, then the problem
becomes too complicated to deal with (In particular for the expression of Tµν). An
approximation can be used in particular situations. For example, near a black hole we
can assume that the contribution of the black hole is predominant over all the others
and, then, the latter can be neglected; so in this case we can consider the Schwarzschild
metric as solution of Einstein Equations and consider only the field equations of the
matter but under the influence of the external gravitational field.
Another phisical situation is that of a polyatomic gas generating its own gravity field
and sufficiently far from the other matter, so as not to be affected by its influence on
the metric tensor. In this case Tµν is the energy-momentum tensor of the polyatomic
gas.
We may consider also the case where the sources are all the matter contained in the
Universe but only if we assume that all the Universe behavies as a polyatomic gas (or
a monoatomic gas as a limiting case). In this case the results are valid only within the
limits imposed by this strong approximation.
In any case, the isotropy of the Universe can be easily imposed by using the Repre-
sentation Theorems; in fact, in this case and in the reference frame comoving with the
fluid, the unknown metric tensor gαβ depends only on the scalar x0 = c t (t is time and
c the light speed in vacuum) and on the vector xi. By applying the Representation
Theorems we see that

• Since g00 is a scalar, it can be expressed as a function of x0 and of

s =

√
(x1)2 + (x2)2 + (x3)2, i.e., g00 = g00

(
x0 , s

)
.

• Since g0i is a vector, it can be expressed as g0i = g1
(
x0 , s

)
xi
s where g1 is a scalar

function.

• Since gij is a symmetric tensor, it can be expressed as gij = g2
(
x0 , s

) xi xj

s2
+

g3
(
x0 , s

)
δij , where g2 and g3 are scalar functions.

In this way we have only the 4 unknows g00, g1, g2, g3 instead of all the 10 independent
components of gµν and the metric tensor is

gαβ =




g00
(
x0 , s

)
g1

(
x0 , s

) xj

s

g1
(
x0 , s

)
xi
s g2

(
x0 , s

) xi xj

s2
+ g3

(
x0 , s

)
δij


 . (2)

Moreover, the line element is

δ s2 = g00
(
d x0

)2
+ 2 g1 d x

0 d s + g2 (d s)2 + g3 δij d x
i d xj . (3)

This is an isotropic and also a rotational invariant so respecting both the isotropy and
the homogeneity of the Universe.
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Since Einstein’s Equations are invariant under an invertible change of 4-dimensional
coordinates, we can use this property to furher reduce the number of the unknowns;
for example, we can change variables with the law




x0 = f
(
X0 , S

)
,

xi = g
(
X0 , S

)
Xi

S

, (4)

where S =
√

XiXjδij from which it follows s = g. In the next section we will prove
that a change of 4-dimensional coordinates of the type (4) can be found such that, in
the new coordinates the metric tensor takes the form

Gαβ =



1 0

0 G2

(
X0 , S

) Xi Xj

S2 + G3

(
X0 , S

)
δij


 , (5)

which has the form (2) but with g00 = 1, g1 = 0. In this way the unknowns functions
reduce to two. As an exercise, the case of the Schartzschild metric is considered.
In sect. 3 we will calculate the left hand side of Einstein Equations (1), while in sect. 4
we will exploit their right hand side. In sect. 5 we will study the hyperbolicity of eqs.
(1) and those for the polyatomic gas; we will see that some equations are consequences
of the others and of suitable boundary conditions. By eliminating these differential con-
straints, the remaining equations give an hyperbolic set of partial differential equations.
Moreover, in sect. 6 we will find the boundary values under which Einstein Equations
give as result the Friedmann-Robertson-Walker (FRW) metric for flat, open or closed
spacetime.

2 Reduction of the unknowns scalar functions

in the metric tensor

The line element with the change of 4-dimensional variables xα = xα (Xµ) becomes

δ s2 = gαβ d x
α d xβ = Gµν dX

µ dXν with Gµν = gαβ
∂ xα

∂ Xµ

∂ xβ

∂ Xν
, (6)

and Gµν is the metric tensor in the new variables. In particular, we have

G00 = g00

(
∂ x0

∂ X0

)2

+ 2 g0h
∂ x0

∂ X0

∂ xh

∂ X0
+ ghk

∂ xh

∂ X0

∂ xk

∂ X0
,

G0b = g00
∂ x0

∂ X0

∂ x0

∂ Xb
+ g0h

(
∂ x0

∂ X0

∂ xh

∂ Xb
+

∂ x0

∂ Xb

∂ xh

∂ X0

)
+ ghk

∂ xh

∂ X0

∂ xk

∂ Xb
,

Gab = g00
∂ x0

∂ Xa

∂ x0

∂ Xb
+ 2 g0h

∂ x0

∂ X(a

∂ xh

∂ Xb)
+ ghk

∂ xh

∂ Xa

∂ xk

∂ Xb
.

(7)

3
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With the particular metric (2) and the change of variables (4), these expressions become

G00 = g00

(
∂ f

∂ X0

)2

+ 2 g1
∂ f

∂ X0

∂ g

∂ X0
+ (g2 + g3)

(
∂ g

∂ X0

)2

, G0b = G1
Xb

S
,

with G1 = g00
∂ f

∂ X0

∂ f

∂ S
+ g1

(
∂ f

∂ S

∂ g

∂ X0
+

∂ f

∂ X0

∂ g

∂ S

)
+ (g2 + g3)

∂ g

∂ S

∂ g

∂ X0
,

Gab = G2
XaXb

S2
+ G3 δab with

G2 = g00

(
∂ f

∂ S

)2

+ 2 g1
∂ f

∂ S

∂ g

∂ S
+ (g2 + g3)

(
∂ g

∂ S

)2

− g3
g2

S2
, G3 = g3

g2

S2
.

(8)

We aim to prove that a change of variables xα = xα (Xµ) exists such that G00 = 1,
G1 = 0. The proof become easier if we firstly prove the following

LEMMA: ”For any given value of gαβ expressed by (2), the functions F
(
x0 , s

)
,

G
(
x0 , s

)
, G2

(
x0 , s

)
, G3

(
x0 , s

)
exist such that

g00 =

(
∂ F

∂ x0

)2

+ (G2 +G3)

(
∂ G

∂ x0

)2

,

g1 =
∂ F

∂ x0
∂ F

∂ s
+ (G2 +G3)

∂ G

∂ s

∂ G

∂ x0
,

g2 =

(
∂ F

∂ s

)2

+ (G2 +G3)

(
∂ G

∂ s

)2

− G3
G2

s2
, g3 = G3

G2

s2
”.

(9)

Proof: Let us consider the first order quasi-linear partial differential equation in the
unknown η

(
x0 , s

)
:

(
η
∂ η

∂ s
− ∂ η

∂ x0

)[
(g1)

2 − g00 (g2 + g3)
]
+ η2

∂ g1
∂ s

[g1 − η (g2 + g3)] + η g1
∂ g1
∂ x0

+

+ η
∂ g00
∂ s

[
− 3

2
g1 + η (g2 + g3)

]
− 1

2
η
∂ g00
∂ x0

(g2 + g3)−
1

2
(g00 − η g1) η

2∂ (g2 + g3)

∂ s
+

+ η

[
g00 −

3

2
η g1 +

1

2
η2 (g2 + g3)

]
∂ (g2 + g3)

∂ x0
= (

√
g00)

3

(
∂

∂ x0
g1√
g00

− ∂

∂ s

√
g00

)
.

(10)

We note that the coefficient
[
(g1)

2 − g00 (g2 + g3)
]
isn’t zero because from (2) we have

det gαβ = (g3)
2
[
g00 (g2 + g3)− (g1)

2
]
< 0. Moreover, we choose for this equation a

boarding condition satisfying the relation

g1 +
√
(g1)

2 − g00 (g2 + g3)

g2 + g3
< η <

g1 −
√

(g1)
2 − g00 (g2 + g3)

g2 + g3
, (11)

4
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so that, for continuity reason, it will be satisfied also in a neighbourhood of the initial
variety. After that, we find the function F by integrating the equations





∂ F
∂ x0 = |g00−η g1|√

η2(g2+g3)− 2 η g1+g00
,

∂ F
∂ s = |g00−η g1|

g00−η g1

g1−η (g2+g3)√
η2(g2+g3)− 2 η g1+g00

,

(12)

We note that η2 (g2 + g3) − 2 η g1 + g00 > 0 as consequence of (11); moreover, by
calculating this expression in η = g00

g1
it becomes

(
g00
g1

)2

(g2 + g3)− g00 < 0 ,

so that g00 − η g1 �= 0 in the interval (11). Finally, the integrability condition on (12)
is nothing more than (10). Consequently, eq. (12) has certainly a solution F .
Now we can find the function G by solving the first order quasi-linear partial differential
equation

∂ G

∂ x0
= η

∂ G

∂ s
, (13)

and consider for G2 and G3 the expressions

G2 +G3 =
g2 + g3 −

(
∂ F
∂ s

)2
(
∂ G
∂ s

)2 , G3 = g3

( s

G

)2
. (14)

Now that we have all the ingredient, we can prove ours eqs. (9); let us begin with (9)1:
By using (12)1, (14) and (13) we see that

(
∂ F

∂ x0

)2

+ (G2 +G3)

(
∂ G

∂ x0

)2

=
(g00 − η g1)

2

η2 (g2 + g3)− 2 η g1 + g00
+ η2

[
g2 + g3 −

(
∂ F

∂ s

)2
]

∗
= g00 ,

where in the passage denoted by
∗
= (12)2 has been used. The result proves (9)1.

Let us consider now (9)2: By using (12), (14) and (13) we see that

∂ F

∂ x0
∂ F

∂ s
+ (G2 +G3)

∂ G

∂ s

∂ G

∂ x0
=

(g00 − η g1) [g1 − η (g2 + g3)]

η2 (g2 + g3)− 2 η g1 + g00
+ η

[
g2 + g3 −

(
∂ F

∂ s

)2
]

∗
= g1 ,

where in the passage denoted by
∗
= (12)2 has been used. The result proves (9)2.

Eq. (9)3 can be easily proven. in fact, by using (14) we see that

(
∂ F

∂ s

)2

+ (G2 +G3)

(
∂ G

∂ s

)2

− G3
G2

s2
= g2 .

Finally, (9)4 is a direct consequence of (14)2. We prove now the

THEOREM 1: ”A change of 4-dimensional variables xα = xα (Xµ) exist such that
G00 = 1, G1 = 0.”

5
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To prove this theorem, let x0 = f
(
X0 , S

)
, s = g

(
X0 , S

)
be the inverse functions

of
X0 = F

(
x0 , s

)
, S = G

(
x0 , s

)
with F and G given in the Lemma. By derivation of

the composite functions, we obtain



1 = ∂ f

∂ X0
∂ F
∂ x0 + ∂ f

∂ S
∂ G
∂ x0

,

0 = ∂ f
∂ X0

∂ F
∂ s + ∂ f

∂ S
∂ G
∂ s




1 = ∂ g

∂ X0
∂ F
∂ s + ∂ g

∂ S
∂ G
∂ s

.

0 = ∂ g
∂ X0

∂ F
∂ x0 + ∂ g

∂ S
∂ G
∂ x0

From these relations we obtain

∂ f

∂ X0
=

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−1

∂ G

∂ s
,

∂ f

∂ S
= −

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−1

∂ F

∂ s
,

∂ g

∂ X0
= −

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−1

∂ G

∂ x0
,

∂ g

∂ S
=

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−1

∂ F

∂ x0
.

By using these expressions, (8)1 becomes

G00 =

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−2 [
g00

(
∂ G

∂ s

)2

− 2 g1
∂ G

∂ s

∂ G

∂ x0
+ (g2 + g3)

(
∂ G

∂ x0

)2
]
= 1 ,

where in the last passage eqs. (9) has been used. Similarly, (8)3 becomes

G1 =

∣∣∣∣∣∣

∂ F
∂ x0

∂ G
∂ x0

∂ F
∂ s

∂ G
∂ s

∣∣∣∣∣∣

−2 [
− g00

∂ G

∂ s

∂ F

∂ s
+ g1

∂ F

∂ s

∂ G

∂ x0
+ g1

∂ F

∂ x0
∂ G

∂ s
−

(g2 + g3)
∂ F

∂ x0
∂ G

∂ x0

]
= 0 ,

where in the last passage eqs. (9) has been used. This completes the proof of the
Theorem.
As example of application of this method, let us consider the Schwarzschild metric
outside the mass M generating it and with spherical simmetry and without rotations
and charges; it can be found in eq. (12.62) on page 437 of [3], or in eq. (A.1) of [4]. It
reads

gαβ = diag

[
F
(
x1

)
, − 1

F (x1)
, −

(
x1

)2
, −

(
x1

)2
sin2 x2

]
with F = 1 − 2GM

c2x1
,

where G is the gravitational constant. This is a particular case of the present eq.
(3) with g1 = 0, and g00, g2 and g3 not depending of time. By applying the present
approach we have then only to find a transformation of 4-dimensional coordinates which
transforms g00 to 1. We will see this now. To this end, let us consider the solution η of
the first one of the following equations and, after that, a solution G1 of the second one:

∂

∂ x0
η

F
=

∂

∂ x1
ln

∣∣∣
√
F cosh η

∣∣∣ , ∂

∂ x0
cosh η√
−F G1

=
∂

∂ x1

(√
F

−G1
sinh η

)
.

6
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By using these functions η and G1, we see that the following equations are integrable
and give the functions f and g:

∂ f

∂ x0
=

√
F cosh η ,

∂ f

∂ x1
=

1√
F

sinh η ,
∂ g

∂ x0
=

√
F

−G1
sinh η ,

∂ g

∂ x1
=

cosh η√
−F G1

.

From the above equations it follows that the following system is satisfied:

F =

(
∂ f

∂ x0

)2

+ G1

(
∂ g

∂ x0

)2

, 0 =
∂ f

∂ x0
∂ f

∂ x1
+ G1

∂ g

∂ x0
∂ g

∂ x1
,

− 1

F
=

(
∂ f

∂ x1

)2

+ G1

(
∂ g

∂ x1

)2

.

We also define G2 = −
(
x1

)2
, G3 = −

(
x1

)2
sin2 X2, where x1 is the expression com-

ing from the inverse of X0 = f
(
x0 , x1

)
, X1 = g

(
x0 , x1

)
. With the change of 4-

dimensional variables X0 = f
(
x0 , x1

)
, X1 = g

(
x0 , x1

)
, X2 = x2, X3 = x3 for the

line element d s2 we then have

d s2 = d
(
X0

)2
+ G1 d

(
X1

)2
+ G2 d

(
X2

)2
+ G3 d

(
X3

)2
=

=

(
∂ f

∂ x0
d x0 +

∂ f

∂ x1
d x1

)2

+ G1 d

(
∂ g

∂ x0
d x0 +

∂ g

∂ x1
d x1

)2

−
(
x1

)2
d
(
x2

)2 −

(
x1

)2
sin2 x2 d

(
x3

)2
= F d

(
x0

)2 − 1

F
d
(
x1

)2 −
(
x1

)2
d
(
x2

)2 −
(
x1

)2
sin2 x2 d

(
x3

)2
.

The expression at the end of the above expression is the line element for the above
Schwarzschild metric, So we have proved that with a transformation of 4-dimensional
variables it takes the form gαβ = diag (1 , G1 , G2 , G3).
Obviously, this was only an exercise because the original metric has already the diagonal
form and, moreover, doesn’t depend on x0, while in the new metric the advantage to
have 1 instead of g00 is canceled by the fact that it depends on X0. Moreover, this case
goes outside the scopes of the present article because it concerns a metric outside the
mass M generating it, so that the right hand side of Einstein Equations (1) is zero and
there is no coupling between the metric and the eventual polyatomic gas that generates
it. One could study the influence of this metric on a polyatomic gas gravitating around
a black hole; in this case the metric is an external field for the gas. In [4] Kremer
studied this case for a monoatomic gas; the generalization to a polyatomic gas may be
the object of a future article.
Coming back to the general treatment before the Schwarzschild example, if we put
ourselves from the beginning in the new coordinates, then (8) can be written as

gαβ =



1 0

0 g2
(
x0 , s

) xi xj

s2
+ g3

(
x0 , s

)
δij


 . (15)

So the unknown functions reduce from the four g00, g1, g2, g3 to only two functions,
i.e., g2 and g3.
A further simplification is obtained by using spherical coordinates

7
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x1 = s cos ϑ , x2 = s sin ϑ cos ϕ , x3 = s sin ϑ sin ϕ.
In this case the line element becomes

δ s2 =
(
d x0

)2
+ G2 (d s)2 + G3

[
(d ϑ)2 + sin2 ϑ (dϕ)2

]
,

with G2 = g2 + g3, G3 = g3 s
2. In this case the metric tensor takes the diagonal form

gαβ = diag
(
1 , G2 , G3 , G3 sin2 ϑ

)
, (16)

with G2 and G3 depending on x0 and s.

3 Calculation of the left hand side of eq. (1)

with the metric (16) (coming from (5))

Let us begin with the Christoffel’s symbols; we can calculate them directly from their
definition (1)4 or with the shorter way indicated in [3], chapter 12.2, page 431. This
method can be summarized as follows:
Let us forget the framework in which we are working and consider a problem in the
context of Rational Mechanics: We start with xα as lagrangian parameters and with
the Lagrangian

L = gαβ
•
xα

•
xβ .

In this case the Lagrange equations become

2 gαβ
• •
x β + 2 (∂γ gαβ)

•
xγ

•
xβ − (∂α gµν)

•
xµ

•
xν= 0 , which, contracted by gδα gives

• •
x δ + M δ

βγ

•
xβ

•
xγ= 0 , with M δ

βγ =
1

2
gδα (2 ∂γ gαβ − ∂α gγβ) .

From this result we see that

Γγ
µν = Mγ

(µν) .

Another interesting property which facilitates the calculations for the second term in
(1)2 is the following one:
Property: ”We have that

Γα
αµ =

1

2
∂µ ln |det gαβ | ”. (17)

Let us apply this method to the case where gαβ is given by gαβ = diag (1 , g1 , g2 , g3);
the expression (16) will be a consequence in the particular case g1 = G2, g2 = G3,
g3 = G3 sin

2 ϑ. We find

Γ0
µν = diag

(
0 , − ∂0 g1

2
, − ∂0 g2

2
, − ∂0 g3

2

)
,

8
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Γ1
µν =




0 1
2 ∂0 ln |g1| 0 0

1
2 ∂0 ln |g1| 1

2 ∂1 ln |g1| 1
2 ∂2 ln |g1| 1

2 ∂3 ln |g1|

0 1
2 ∂2 ln |g1| − ∂1 g2

2 g1
0

0 1
2 ∂3 ln |g1| 0 − ∂1 g3

2 g1




.

Γ2
µν =




0 0 1
2 ∂0 ln |g2| 0

0 − ∂2 g1
2 g2

1
2 ∂1 ln |g2| 0

1
2 ∂0 ln |g2| 1

2 ∂1 ln |g2| 1
2 ∂2 ln |g2| 1

2 ∂3 ln |g2|

0 0 1
2 ∂3 ln |g2| − ∂2 g3

2 g2




.

Γ3
µν =




0 0 0 1
2 ∂0 ln |g3|

0 − ∂3 g1
2 g3

0 1
2 ∂1 ln |g3|

0 0 − ∂3 g2
2 g3

1
2 ∂2 ln |g3|

1
2 ∂0 ln |g3| 1

2 ∂1 ln |g3| 1
2 ∂2 ln |g3| 1

2 ∂3 ln |g3|




.

where ∂α denotes ∂
∂ xα .

Now we can calculate the Ricci Tensor (1)2 and find

R00 = − 1

2
∂00 ln |g1g2g3| −

1

4

3∑
A=1

(∂0 ln |gA|)2 . (18)

R01 =− 1

2
∂01 ln |g2g3| +

1

4
(∂1 ln |g2g3|) (∂0 ln |g1|)

− 1

4
(∂0 ln |g2|) (∂1 ln |g2|) − 1

4
(∂0 ln |g3|) (∂1 ln |g3|) ,

R11 =− ∂00 g1
2

− ∂2

(
∂2 g1
2 g2

)
− ∂3

(
∂3 g1
2 g3

)
− 1

2
∂11 ln |g2g3|+

+
1

4
(∂1 ln |g2g3|) (∂1 ln |g1|) − 1

4
(∂1 ln |g2|)2 − 1

4
(∂1 ln |g3|)2 +

+
g1
4

(∂0 ln |g1|)2 +
g1
4 g2

(∂2 ln |g1|)2 +
g1
4 g3

(∂3 ln |g1|)2 −
∂0 g1
4

∂0 ln |g2g3| −

∂2 g1
4 g2

∂2 ln |g2g3| −
∂3 g1
4 g3

∂3 ln |g2g3| .

9
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R12 = − 1

2
∂12 ln |g3| +

1

4
(∂2 ln |g3|) (∂1 ln |g2|) +

1

4
(∂1 ln |g3|) (∂2 ln |g1|)

− 1

4
(∂2 ln |g3|) (∂1 ln |g3|) ,

Moreover, R02 can be desumed by (18)2 by exchanging the indexes 1 and 2; similarly,
R03 can be desumed by (18)2 by exchanging the indexes 1 and 3. In the same way R22

and R33 can be desumed by (18)3 with a suitable change of indexes, while R13 and R23

can be desumed by (18)4 with suitable changes of indexes.
Now we can calculate the curvature (1)3; taking into account that

the inverse matrix of gαβ = diag (1 , g1 , g2 , g3) is gαβ = diag

(
1 ,

1

g1
,
1

g2
,
1

g3

)
,

(19)

we obtain

R = R00 +
R11

g1
+

R22

g2
+

R33

g3
.

So we have now all we need to write the left hand side of Einstein Equation (1)1. But we
don’t need to write all the components of this equation because they must be coupled
with those of the polyatomic gas which, for an N moments model, are

∇α V
α = 0 , ∇α T

αβ = 0 , ∇αA
αβ1 ···βn = Iβ1 ···βn , for n = 2 , · · · , N . (20)

The first two of these equations are the conservation law of mass and that of energy-
momentum, respectively; they are contained in (20)3 for n = 0, 1 but we have preferred
to write them separately for their importance. Moreover, ∇α denotes the covariant
derivative which for a generic tensor T β1···βn

γ1···γn is

∇α T
β1···βn
γ1···γn = ∂α T

β1···βn
γ1···γm +

n∑
r=1

Γβr

αβ T
β1···βr−1ββr+1···βn
γ1···γm −

m∑
s=1

Γγ
αγs T

β1···βn
γ1···γs−1γγs+1···γm .

(21)

(See eq. (10.26) 0n page 304 of [3]). The use of the covariant derivative is important
because the Ricci Tensor and the curvature satisfy the identity
∇µ

(
Rµν − 1

2 Rgµν
)
= 0, so that from (1)1 it follows∇µ T

µν = 0; this fact suggests that
all the balance equations for the polyatomic gas must be expressed with the covariant
derivative. Moreover, since we have done some changes of 4-dimensional coordinates,
it is necessary that we use a derivative which does’t depend on these changes, as the
covariant derivative. More than that, we can use the following theorem

THEOREM 2: The following set of conditions are equivalent:




∇α T
αβ = 0 ,

Rαβ − R
2 gαβ = 8πG

c4
Tαβ ,

⇔




∇α T
αβ = 0 ,

R0β − R
2 g0β = 8πG

c4
T 0β only as boundary

conditions,

Rab − R
2 gab = 8πG

c4
T ab .

(22)

10
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PROOF: The implication ⇒ is obvious, To prove ⇐ we note that from the identity
∇α

(
Rαβ − R

2 gαβ
)
= 0 and from the first equation in the right hand side of (22) it

follows ∇α

(
Rαβ − R

2 gαβ − 8πG
c4

Tαβ
)
= 0, i.e.,

∂0

(
R0β − R

2
g0β − 8πG

c4
T 0β

)
+ ∂a

(
Raβ − R

2
gaβ − 8πG

c4
T aβ

)
+

+ Γα
αδ

(
Rδβ − R

2
gδβ − 8πG

c4
T δβ

)
+ Γβ

µν

(
Rµν − R

2
gµν − 8πG

c4
Tµν

)
= 0 .

For β = b and for β = 0 these equations, by using the third equation in the right hand
side of (22), become respectively

∂0

(
R0b − R

2
g0b − 8πG

c4
T 0b

)
+ Γα

α0

(
R0b − R

2
g0b − 8πG

c4
T 0b

)
+

+ 2Γb
m0

(
Rm0 − R

2
gm0 − 8πG

c4
Tm0

)
+ Γb

00

(
R00 − R

2
g00 − 8πG

c4
T 00

)
= 0 ,

∂0

(
R00 − R

2
g00 − 8πG

c4
T 00

)
+ ∂a

(
Ra0 − R

2
ga0 − 8πG

c4
T a0

)
+

+ Γα
αδ

(
Rδ0 − R

2
gδ0 − 8πG

c4
T δ0

)
+

+ Γ0
00

(
R00 − R

2
g00 − 8πG

c4
T 00

)
+ 2Γ0

m0

(
Rm0 − R

2
gm0 − 8πG

c4
Tm0

)
= 0 .

It follows that R00 − R
2 g00 − 8πG

c4
T 00 = 0, Rm0 − R

2 gm0 − 8πG
c4

Tm0 = 0 ∀x0 as
consequence of the second equation in the right hand side of (22). Jointly with the first
and third equation in the right hand side of (22), this result proves the left hand side
of (22).
This result is important because it shows that we must impose only the equations

∇α V
α = 0 , ∇α T

αβ = 0 , ∇αA
αβ1 ···βn = Iβ1 ···βn , for n = 2 , · · · , N ,

Rab − R

2
gab =

8πG

c4
T ab , for a, b = 1, 2, 3.

(23)

The remaining equations of (1)1 must be imposed only as initial conditions. This is in
according with the general theory of constrained hyperbolic systems which have been
considered in [5]-[7].
For the sequel we remark that (23)4 is equivalent to Rab − R

2 gab =
8πG
c4

Tab because in
our metric we have g0j = 0. We note also that in [1] (which used armonic coordinates
and didn’t concern polyatomic gases) there were some equations to be leaved out and the
remaining one constitute an hyperbolic system. But it wasn’t proved that the equations
leaved out are consequences of the remaining ones and of the boundary conditions. We
don’t consider the possibility of exploiting this possibility because it is outside the scope
of the present article.

11
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In the present case, eq. (23)4 are

G2

G3
∂00G3 + F =

8πG

c4
T11 ,

G3

2G2
∂00G2 +

1

2
∂00G3 +

1

2G2
∂11G3 +G =

8πG

c4
T22 ,

T33 = T22 sin2 ϑ , T12 = 0 , T13 = 0 , T23 = 0 ,

(24)

where F and G are explicit functions of G2, G3 and of their first order derivatives with
respect to x0 and s. The first two of these equations allow to determinate G2 and G3;
the other are constraints on the energy-momentum tensor, but they are automatically
satisfied because of the requirement of isotropy of the universe. As we have assumed
that gαβ has the decomposition (2) in the initial 4-dimensional variables of the reference
comoving with the fluid, then the same thing must be said for all the other quantities.
For example, Tαβ must have the decomposition

Tαβ =




e
(
x0 , s

) q (x0 , s)
c

xj

s

q (x0 , s)
c

xi
s t1

(
x0 , s

) xi xj

s2
+ t2

(
x0 , s

)
δij


 ,

with

1

3
(t1 + t2) (g2 + g3) +

2

3
t2 g3 = p+Π .

(Definition of pressure and the dynamic pressure).

To see briefly how it becomes after the two changes of 4-dimensional variables, we may
consider the quadratic form

Tαβ d x
α d xβ = Tαβ

∂ xα

∂ Xµ

∂ xβ

∂ Xν
dXµdXν =

N
T µν dX

µdXν ,

where in the right hand side we have used a generic change of 4-dimensional variables;

so, by expressing this quadratic form in the new 4-dimensional coordinates, then
N
T µν

comes out automatically as the associated matrix. In particular, after our two changes
of 4-dimensional coordinates the energy momentum tensor takes the form

Tαβ =




T00 T01 0 0

T01 T11 0 0

0 0 T22 0

0 0 T22 sin
2 ϑ




, (25)

with explicit expressions of T00, T01, T11, T22 which we don’t report. So the conditions
(24)3−6 are automatically satisfied. In similar way can be treated all the other tensors
appearing in the closure. But they aren’t necessary here because they will come out
automatically when we express them in terms of physical variables. These have been
found in [8]-[10] but only in the case of a Minkowsky metric; in the next section we will
find what changes with the present metric.

12
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4 The closure of the balance equations with the

present metric

We adopt for Aα1···αn+1 , Iα1···αn the expressions which has been found in [8]-[10], i.e.,

Aα1···αn+1 =
c

mn−1

∫

�3

∫ +∞

0
f pα1 · · · pαn+1

(
1 +

I
mc2

)n

φ(I) d�P d I ,

Iα1···αn =
c

mn−1

∫

�3

∫ +∞

0
Qpα1 · · · pαn

(
1 +

I
mc2

)n

φ(I) d�P d I , (26)

with the distribution function f given by

f = e
−1− χ

kB , χ =
N∑

n=0

λα1α2···αn p
α1pα2 · · · pαn

1

mn−1

(
1 +

I
mc2

)n

, (27)

where kB is the Boltzmann constant, m is the particle mass, I is the contribution to
energy from internal modes and λα1···αn are Lagrange multipliers which are taken as
independent variables. The expression (26)2 was found in [11]. To express every thing
in terms of physical variables we need an inversion of variables; this was realized in
[8]-[10] but by considering a Minkowsky metric and by calculating the integrals in the
reference frame comoving with the fluid. In the present approach, the metric gαβ is an
unknown to be determined; moreover, in the reference frame comoving with the fluid
the metric was given by (2) but, after that, we made the two changes of 4-dimensional
variables (4) and that which uses polar coordinates. So, let us see the implications
of these 2 changes. To this end, let us recall from literature that under a change of
4-dimensional variables the left hand side of Einstein Equation transforms according to
the law

N
R

µν − 1

2

N
R

N
g µν =

(
Rαβ − 1

2
Rgαβ

)
∂ Xµ

∂ xα
∂ Xν

∂ xβ
→

N
T

µν = Tαβ ∂ Xµ

∂ xα
∂ Xν

∂ xβ
,

where the quantities
N

(· · · ) denote the expression of (· · · ) after the change of the 4-
dimensional variables; moreover, the last implication is a consequence of (1)1.
The same property must hold also for the other tensors Aα1···αn+1 , Iα1···αn . In particular,

if in the initial comoving reference frame we have
H
V α≡ (ρ c , 0 , 0 , 0), then

H
V α d xα = ρ c d x0 = ρ c

(
∂ f

∂ X0
dX0 +

∂ f

∂ S
dS

)
→

N
V α≡ ρ c

(
∂ f

∂ X0
,
∂ f

∂ S
, 0 , 0

)
.

From this relation we obtain

N
V α

N
V β gαβ = ρ2 c2

[(
∂ f

∂ X0

)2

+
1

G2

(
∂ f

∂ s

)2
]

→ .

N
ρ= ρ

√(
∂ f

∂ X0

)2

+
1

G2

(
∂ f

∂ S

)2

,
N
Uα≡

c√(
∂ f
∂ X0

)2
+ 1

G2

(
∂ f
∂ S

)2

(
∂ f

∂ X0
,
∂ f

∂ S
, 0 , 0

)
.
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This relations show that, altough ρ seems apparently a scalar function, it isn’t invariant
and in our last 4-dimensional coordinates we are no more in a reference frame comoving
with the fluid. But we can define v from

v√
1 + v2

c2G2

=
c ∂ f
∂ S√(

∂ f
∂ X0

)2
+ 1

G2

(
∂ f
∂ S

)2
→

∂ f
∂ X0√(

∂ f
∂ X0

)2
+ 1

G2

(
∂ f
∂ S

)2
=

1√
1 + v2

c2G2

.

(28)

By calling
(
1 + v2

c2G2

)−1/2
= Γ(v), we have obtained that

N
Uα≡ Γ(v) (c , v , 0 , 0) ,

N
U

α ≡ Γ(v)

(
c ,

v

G2
, 0 , 0

)
,

N
V α=

N
ρ

N
Uα .

Similarly, equilibrium (denoted with the apex E) is defined as the state where λ = λE ,

λα = λE
α , λα1···αn = 0 for n = 2, · · · , N and we have Tαβ

E = e+p
ρ2c2

V αV β − p gαβ . It
follows that

ρ2e = Tαβ
E

VαVβ

c2
, p =

1

3

(
e − Tαβ

E gαβ

)
, →

N
ρ 2 N

e= ρ2e ,

N
e= e

(
ρ
N
ρ

)2

=
e(

∂ f
∂ X0

)2
+ 1

G2

(
∂ f
∂ S

)2 ,
N
p=

1

3

(
N
e − e+ 3p

)
= p +

N
e −e

3
.

So also the energy density e and the pressure p aren’t invariant. More completely, at
equilibrium we have still (25) but with

TE
00 = (e+ p) Γ2(v)− p , TE

01 = (e+ p) Γ2(v)
v

c
, TE

11 = Γ2(v)

(
e
v2

c2
− pG2

)
,

TE
22 = −pG3 .

Now we have to calculate again the expressions of e and p and not to simply use the
results of [8]-[10]. In what follows we will operate only in our last 4-dimensional variables

so that every thing will be referred to them and we will omit both the apex
N

(· · · ). But
it will be necessary to use the decomposition Uα ≡ Γ(v) (c , v , 0 , 0) , Vα = ρUα.
For the sequel it will be useful to calculate also

A
α1···αn+1

E =
c

mn−1

∫

�3

∫ +∞

0
fE pα1 · · · pαn+1

(
1 +

I
mc2

)n

ϕ(I) d I d 
P , (29)

where

fE = e
−1− χE

kB , χE = mλE + λE
µ p

µ

(
1 +

I
mc2

)
.

It follows that

dA
α1···αn+1

E = − m

kB

(
A

α1···αn+1

E d λE + A
α1···αn+2

E d λE
αn+2

)
. (30)
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This equation, written for n = 0 is

d (ρUα1) = − m

kB

[
ρUα1 d λE +

(
e
Uα1Uα2

c2
+ p hα1α2

)
d λE

α2

]
,

whose contraction with Uα1 allows to determine

d λE = − kB
mρ

dρ − e

ρ c2
Uα2 d λE

α2
.

By substituting this in eq. (30), we find

dA
α1···αn+1

E = A
α1···αn+1

E

(
1

ρ
d ρ +

em

ρ c2kB
Uγ d λE

γ

)
− m

kB
A

α1···αn+2

E d λE
αn+2

.

If we take ρ and λE
γ as independent variables, the coefficient of d ρ shows that A

α1···αn+1

E

is linear and homogeneos in the variable ρ, while the coefficient of d λE
γ allows to deter-

mine

A
α1···αn+2

E = − kB
m

∂ A
α1···αn+1

E

∂ λE
αn+2

+
e

ρ c2
A

α1···αn+1

E Uαn+2 . (31)

Thanks to this result, all the tensors A
α1···αn+1

E are determined in terms of the previous
ones. Obviously, we must be careful and express everything in terms of ρ and λE

γ .
Regarding the second one of these, we note that

λE
γ =

Uγ

T
→ T =

c√
λE
δ λ

Eδ
, Uγ =

c√
λE
δ λ

Eδ
λE
γ , Aγ

E = ρUγ =
ρ c√
λE
δ λ

Eδ
λE
γ .

As a test, let us consider eq. (31) for n = 0 and use the projector hαβ = − gαβ + UαUβ

c2
,

i.e.,

Tα1α2
E = − kB

m

∂ Aα1

∂ λE
α2

+
e

ρ c2
Aα1

E Uα2 == − kB
m


 ρ c√

λE
δ λ

Eδ
gα1α2 − ρ c(

λE
δ λ

Eδ
)3/2λα1

E λα2
E


 +

+
e

λE
δ λ

Eδ
λα1
E λα2

E =
kB
m

ρT hα1α2 +
e

c2
Uα1Uα2 .

So we have obtained the correct expression for the coefficient of Uα1Uα2 , while the
other term gives

p =
kB
m

ρT = ρ
c2

γ
(as in the case with a Minkowsky metric), with γ =

mc2

kBT
. (32)

We note that (31) doesn’t permit to obtain the expression of the energy e; so to find it
we must go back to the definition (26)1 for n = 0 and contracted by Uα1 and for n = 1
and contracted by Uα1Uα2 ; the effective calculations are performed in appendix and the
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result is

e

p c2
= Γ(v)

[∫ +∞

0

∫ +∞

0
e
−γΓ

(
1+ I

mc2

)
cosh s

sinh2 s

(
cosh s

sinh ξ

ξ
+

+
1

γΓ
(
1 + I

mc2

) sinh ξ − ξ cosh ξ

ξ

)
ϕ(I) d s d I

]−1

·

·
∫ +∞

0

∫ +∞

0
e
−γΓ

(
1+ I

mc2

)
cosh s

sinh2 s

(
cosh2 s

sinh ξ

ξ
+

+
ξ sinh ξ + 2

[
1 + γΓ

(
1 + I

mc2

)
cosh s

] sinh ξ−ξ cosh ξ
ξ

γ2Γ2
(
1 + I

mc2

)2
)(

1 +
I

mc2

)
ϕ(I) d s d I ,

(33)

where

ξ =
γ Γ√
−G2

(
1 +

I
mc2

)
sinh s

v

c
.

From these relations it follows

lim
v→0

ξ = 0 ,

lim
v→0

e

p c2
=

∫ +∞
0

∫ +∞
0 e

−γ
(
1+ I

mc2

)
cosh s

sinh2 s cosh2 s
(
1 + I

mc2

)
ϕ(I) d s d I

∫ +∞
0

∫ +∞
0 e

−γ
(
1+ I

mc2

)
cosh s

sinh2 s cosh sϕ(I) d s d I
,

as in the case [9] without the gravitational field.
We note that (31) holds also in the case without gravitational field (the passages here
followed don’t take into account this presence), so the expression of A

α1···αn+1

E is the
same. The only difference is the expression of e that now replaces that in eqs. (12)2,3
of [9] and (3)2 of [10]. So we obtain the expressions (14),(16) of [9].
We have now to explicitate eq. (25) according to the definitions

0 = Uαq
α → q0 = − v

c
q ,

UαT
αβ = eUβ + qβ → qα = −hαµ Uβ T

βµ ,

hαβ T
αβ = 3 (p+Π) , t<µν>3 =

(
hµα h

νβ − 1

3
hαβh

µν

)
Tαβ ,

from which it follows

Tµν = e
UµUν

c2
+ (p+Π)hµν +

2

c2
U (µqν) + t<µν>3 .
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We find

Tαβ = (34)

=




eΓ2 + (p+Π)
(
Γ2 − 1

)
(e+ p+Π)Γ2 v

cG2
+ 0 0

−2Γ v
c2
q + q

c Γ
(
1− v2

c2G2

)
+

−2 G3
G2

Γ2 v2

c2
t<> +2 G3

G2
Γ2 v

c t
<>

(e+ p+Π)Γ2 v
cG2

+ e Γ2v2

c2 (G2)
2 − (p+Π) Γ2

G2
+ 0 0

+ q
c Γ

(
1− v2

c2G2

)
+ +2 q Γ v

c2G2

+2 G3
G2

Γ2 v
c t

<> −2 G3
G2

Γ2t<>

0 0 t<> − p+Π
G3

0

0 0
t<> − p+Π

G3

sin2 ϑ




,

t<αβ>3 =




−2 G3
G2

Γ2 v2

c2
t<> +2 G3

G2
Γ2 v

c t
<> 0 0

+2 G3
G2

Γ2 v
c t

<> −2 G3
G2

Γ2t<> 0 0

0 0 t<> 0

0 0 t<>

sin2 ϑ




.

With these steps we have introduced 5 new independent variables, n, γ, Uα. To elimi-

nate this drawback we have to consider the system 0 = V α−V α
E , 0 = UαUβ

(
Tαβ − Tαβ

E

)

to obtain λ−λE , λβ−λE
β which now are substituted by the 5 new independent variables.

Another possibility is to use only physical variables and, in this case, all the Lagrange
multipliers must be expressed in terms of them. For the sake of simplicity, I consider
here only the 15 moments model for polyatomic gases as in [9]. In this case we have to
consider the system constituted by eqs. (26)1,2 and (26)3 contracted by UαUβUγ of [9],

with ∆ defined in (23) of [9], i.e, ∆ = 4
c2
UαUβUγ

(
Aαβγ −Aαβγ

E

)
. All the other steps

in [9] hold also in the present case and we find their same closure (35), i.e.,

Aαβγ =

(
ρ θ02 +

1

4c4
∆

)
UαUβUγ +

(
ρ c2 θ12 −

3

4c2
N∆

D4
∆ − 3

NΠ

D4
Π

)
h(αβUγ)

+
3

c2
N3

D3
q(αUβUγ) +

3

5

N31

D3
h(αβqγ) + 3C5t

(<αβ>3Uγ) ,

(35)

Iβγ =− 1

4c4τ
∆UβUγ +

1

4c2τ

N∆

D4
∆hβγ +

1

τ

NΠ

D4
Πhβγ +

+
1

c2τ

(
θ1,3
θ1,2

− 2
N3

D3

)
U (β qγ) + − 1

τ
C5 t

<βγ>3 .

where all the coefficients are reported in [9].
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5 Hyperbolicity of the equations (23) with met-

ric (19)

Let us define Sµν = Rµν − 1
2 Rgµν − 8πG

c4
Tµν ; in this way eqs. (23)4 become Sab = 0.

We prove now the following
THEOREM 3: ”The statement Sab = 0 with a = b = 1, 2, 3, coupled with initial
conditions including

g3 − g2 sin2 ϑ = 0 , ∂0
(
g3 − g2 sin2 ϑ

)
= 0 , ∂2 g1 = 0 , ∂3 g1 = 0 , ∂2 g2 = 0 , (36)

∂3 g2 = 0 , ∂02 g1 = 0 , ∂03 g1 = 0 , ∂02 g2 = 0 , ∂03 g2 = 0 ,

implies that, also outside of the initial manifold, we have

g3 − g2 sin2 ϑ = 0 , ∂2 g1 = 0 , ∂3 g1 = 0 , ∂2 g2 = 0 , ∂3 g2 = 0 , Sab = 0also with a �= b ”.
(37)

To prove this theorem it suffices to verify that it is effectiveely a solution of Sab = 0
with ab = 11, 12, 13, 22, 23, 33. This is true because for the solution satisfying (37)1−5

we have
{
Sab = 0 if a �= b identically, for the expression (18)4 and similar; also for (25) ,
S33 = S22 sin2 ϑ ,

while S11 = 0 and S22 = 0 become equations for the determination of g1 and g2.
CONSEQUENCES: For the study of hyperbolicity it suffices to consider only the equa-
tions (23)1−3 and the equations (23)4 only for a = b = 1, 2, 3. Moreover, we have to
include (36) but only as initial conditions in the initial manifold.
We see that eqs. (23)4 for a = b are partial differential equations of the second order,
while (23)1−3 are of first order. To reduce to a system all of the first order, we define

∂α ga = gαa , → ∂[β g
α]
a = 0 .

Here the equations on the right hand side are the integrability conditions on those in
the left hand side. In this way the system (23)1−3 and (23)4 with a = b can be written
as

∂α V
α = H , ∂α T

αβ = Hβ , ∂αA
αβγ = Hβγ , ∂0 ga = g0a , ∂0 g

b
a − ∂b g

0
a = 0 ,

g1
2 g2

∂0 g
0
2 +

g1
2 g3

∂0 g
0
3 +

g1
2 g2g3

∂2 g
2
3 +

g1
2 g2g3

∂3 g
3
2 = K1

g2
2 g1

∂0 g
0
1 +

g2
2 g3

∂0 g
0
3 +

g2
2 g1g3

∂1 g
1
3 +

g2
2 g1g3

∂3 g
3
1 = K2 ,

g3
2 g2

∂0 g
0
2 +

g3
2 g1

∂0 g
0
1 +

g3
2 g1g2

∂2 g
2
1 +

g3
2 g1g2

∂1 g
1
2 = K3 ,

(38)

where H, Hβ , Hβγ , K1, K2 and K3 are functions of ρ , γ , Uα , Π , qα , t<αβ>
3 , gαa .

The equations to study wave propagation can be obtained by substituting ∂0 with −u d
and ∂k with nk d an unitary vector; the remaining part of each equation has to be put

18
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equal to zero. In our case these equations are

− u dV 0 + nk d V
k = 0 , −u dT 0β + nk d T

kβ = 0 , −u dA0βγ + nk dA
kβγ = 0 ,

− u d ga = 0 , −u d gba − nb d g
0
a = 0 ,

− u

(
g1
2 g2

d g02 +
g1
2 g3

d g03

)
+

g1
2 g2g3

n2 d g
2
3 +

g1
2 g2g3

n3 d g
3
2 = 0

− u

(
g2
2 g1

d g01 +
g2
2 g3

d g03

)
+

g2
2 g1g3

n1 d g
1
3 +

g2
2 g1g3

n3 d g
3
1 = 0 ,

− u

(
g3
2 g2

d g02 +
g3
2 g1

d g01

)
+

g3
2 g1g2

n2 d g
2
1 +

g3
2 g1g2

n1 d g
1
2 = 0 .

(39)

We note that the last 5 equations don’t depend on the other variables which are present
in (39)1−3. They depend only on the 15 variables d ga, d g

α
a .

If u = 0, the equations (39)4−5 give d g
0
a = 0; jointly with (39)6−8 they give 6 constraints

on the above mentioned 15 variables and we conclude that the eigenvalue u = 0 has at
least multiplicity 9.
If u �= 0, the equations (39)4−5 give d ga = 0, d gba = − nb

u d g0a. By substituting in
(39)6−8 we obtain the system




0 u2 g1
2 g2

+ (n3)
2 g1

2 g2 g3
u2 g1

2 g3
+ (n2)

2 g1
2 g2 g3

u2 g2
2 g1

+ (n3)
2 g2

2 g1 g3
0 u2 g2

2 g3
+ (n1)

2 g2
2 g1 g3

u2 g3
2 g1

+ (n2)
2 g3

2 g1 g2
u2 g3

2 g2
+ (n1)

2 g3
2 g1 g2

0







d g01

d g02

d g03




=




0

0

0




.

So we obtain 6 other independent eigenvectors correspondind to the 6 real eigenvalues
which are the solutions of

u2 = − (n1)
2

g1
, u2 = − (n2)

2

g2
, u2 = − (n3)

2

g3
.

Since the sum ot the independent eigenvectors is 15, the hyperbolicity is proved for
(39)4−8. Regarding the role of (39)1−3, we can take for them d ga = 0, d gαa = 0;
in other words, they are the same of the case with gαβ constant. So we can use the
results of [9] and say that they give other 15 linearly independent eigenvectors, So the
hyperbolicity is proved for all the set (39).
We note that, if we start from the metric (16) and do the same calculations, we find
that the hyperbolicity requirement isn’t satisfied. This is not a problem because, by
applying the results of [5], [6] and [7], we find that the metric (16) is a consequence
of the metric here used gαβ = diag (1 , g1 , g2 , g3) (see (19)) and of suitable initial
conditions.
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6 The Friedmann-Robertson-Walker (FRW) met-

ric

Let us see if it is possible to obtain as a particular solution the FRW metric gαβ =

diag
(
1 , −α g , −α (x1)

2 , −α (x1)
2 sin2 x2

)
with α = α (x0), g = 1

1− ε (x1)2
, α > 0,

ε =





0 for flat space-time ,
1 for a closed space-time

− 1 for open space-time .

With this metric the components of Einstein Equations (1), Sαβ = Rαβ − R
2 gαβ =

8πG
c4

Tµν , become

S00 = − 3

2

α′′

α
+

1

αx1
g′

g2
+

1

α (x1)2
− 1

α g (x1)2
=

8πG

c4
T00 ,

S11 = − 1

2
α′′ g +

1

2
g
(α′)2

α
− g

(x1)2
+

1

(x1)2
=

8πG

c4
T11 ,

S22 =

(
x1

)2
g

S11 +
1

2
x1

(
1

g
− 1

)′
−

(
1

g
− 1

)
=

8πG

c4
T22 ,

S33 = S22 sin2 ϑ =
8πG

c4
T33 ,

Sαβ = 0 for α �= β → Tαβ = 0 for α �= β .

From the third one of these relations we see that S22 =
(x1)

2

g S11 if and only if 1
g − 1

satisfies the differential equation

1

2
x1

(
1

g
− 1

)′
=

1

g
− 1 ↔ g =

1

1 − ε (x1)2
,

with ε an arbitrary integration constant; so the above values of ε are particular cases
with physical meaning.
By comparing with the expression (34) of Tαβ , we see that

• The result T12 = 0 calculated at equilibrium implies that v = 0. So a first initial
condition necessary to have the FRW metric is that in the initial manifold we
have v = 0; after that, for the hyperbolicity of the system we will have v = 0 also
outside of it.

• The result T12 = 0 outside of equilibrium implies that q = 0, i.e., there is no heat
flux.

• The result S22 =
(x1)

2

g S11 implies that 0 = T22 − (x1)
2

g T11 = 3α2
(
x1

)4
t<>, i.e.,

there is no viscous deviatoric stress t<> and we have

Tαβ = diag

(
e ,

p+Π

α g
,

p+Π

α (x1)2
,

p+Π

α (x1)2 sin2 ϑ

)
.

So, v = 0, q = 0, t<> = 0 aren’t conditions dictated by physics, but only necessary
conditions in order to have the FRW metric otherwise we will obtain another met-
ric; physical experiments can only test if a particular polyatomic gas satisfies these
conditions.
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7 Conclusions

It has been proved here that, with the metric gαβ = diag (1 , g1 , g2 , g3) , ga = ga (x
α),

Eintein Equations coupled with that of a polyatomic gas constitute a set of hyperbolic
equations. The conditions coming out from isotropy give a metric that is a particular
case of the previous one, but in this way hyperbolicity is lost; it is recovered only if
we study hyperbolicity with the metric gαβ = diag (1 , g1 , g2 , g3) and impose only as
boundary conditions g3 = g2 sin2 ϑ, g1 = g1

(
x0 , x1

)
, g2 = g2

(
x0 , x1

)
.

Moreover, it has been found that only with the further boundary conditions v = 0,
q = 0, t<> = 0 we may obtain the Friedmann-Robertson-Walker metric.
Further investigations are possible; for example, the isotropy isn’t imposed in the arti-
cles on polyatomic gases with the Minkowsky metric and there is no reason to impose
it here. So the present article can be considered as a starting point to this further
development. Moreover, the case can be studied where the gravitational field operates
externally to the polyatomic gas, for example outside a black hole; this can be used
to estimate the radius of the bkack hole by observing how the gases orbiting it move.
Previous estimates not based on Extended Thermodynamics nor on polyatomic gases
have given results very different from the ”photo” that was made recently of one of
these black holes.

Acknowledgments: I thank prof. Tommaso Ruggeri of the University of Bologna
for stimulating my scientific curiosity on these topics.

A Appendix: Integrations of (29)1 to obtain the

energy density e

First of all we have to clarify our ideas about the integral factor d �P because in

[9] it was taken as d p1 d p2 d p3

p0
, while in [2] (after their eq. (62)) it was taken as

d p1 d p2 d p3

p0

√
− det gαβ . With both expressions we obtain the same result for the de-

termination of the fields. But, for accuracy reasons, in the next subsection we will
prove that the previous expression is the correct one. It is clear that the authors of [2]
forgive that d �P doesn’t denote an integration over all the 4-dimensional space but over
an hypersurface of this space, the hypersurface with equation gαβ p

αpβ = m2c2.

A.1 The integral factor d �P .

It is easier if we start with integrals over all �4 in the following way: In [8] it was
defined
p∗α = pα

(
1 + I

mc2

)
; in this way the integration factor can be used ψ(I) d �P ∗ all over

the subspace of �4 given by the 4-dimensional cone p∗α p∗α ≥ m2c2. But, to integrate
over this cone, it is convenient to come back to the old variables. Since

p∗ 1 = p1
(
1 +

I
mc2

)
, p∗ 2 = p2

(
1 +

I
mc2

)
, p∗ 3 = p3

(
1 +

I
mc2

)
, (40)
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the Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ p0

∂ p1

(
1 + I

mc2

) ∂ p0

∂ p2

(
1 + I

mc2

) ∂ p0

∂ p3

(
1 + I

mc2

) p0

mc2

(
1 + I

mc2

)
0 0 p1

mc2

0
(
1 + I

mc2

)
0 p2

mc2

0 0
(
1 + I

mc2

) p3

mc2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (41)

=
1

mc2

(
1 +

I
mc2

)3(
− p0 + p1

∂ p0

∂ p1
+ p2

∂ p0

∂ p2
+ p3

∂ p0

∂ p3

)
.

Now the derivatives of g00
(
p0
)2

+ 2 g0i p
0pi + gij p

ipj = m2c2 with respect to pk give

(
g00 p

0 + g0i p
i
) ∂ p0

∂ pk
= − g0k p

0 − gkj p
j → ∂ p0

∂ pk
= − pk

p0
→ .

→ − p0 + p1
∂ p0

∂ p1
+ p2

∂ p0

∂ p2
+ p3

∂ p0

∂ p3
= − p0 p0 + pk pk

p0
= − m2c2

p0
.

So (41) gives

|J | =
(
1 +

I
mc2

)3 m

p0
.

So, the integral factor ψ(I) d �P ∗ becomes

ϕ(I) d p
1 d p2 d p3

p0
d I .

where we have chosen ψ(I) = ϕ(I)
(
1 + I

mc2

)−3 1
m .

So we have found the same expression in [9] for the case of a Minkowsky spacetime; we
only have to pay attention to the fact that p0 isn’t equal to p0, but to g0α p

α.

A.2 Determination of V α and T αβ

Let us consider (29)1 for n = 0 contracted with Uα1 and (29)1 for n = 1 contracted

with
Uα1Uα2

c2
. To calculate the integrals we use the change of variables

p1 =
mc√
−G2

sinh s cos ψ , p2 =
mc√
−G3

sinh s sin ψ cos φ ,

p3 =
mc

sin ϑ
√
−G3

sinh s sin ψ sin φ , with s ∈ [0 , +∞[ ψ ∈ [0 , π[ φ ∈ [0 , 2π[ .

The Jacobian of the transformation is

J =
m3c3

− sin ϑG3

√
−G2

cosh s sinh2 s sin ψ , and, moreover, we have p0 = mc cosh s ,

Uαp
α = mc2Γ

(
cosh s+

1√
−G2

v

c
sinh s cos ψ

)
.
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The second one of these relations comes out from pαpβgαβ = m2c2. Eqs (29)1 for n = 0

contracted with Uα1 and (29)1 for n = 1 contracted with
Uα1Uα2

c2
give ρ c2 and e; after

calculating the integrals in d φ and in dψ we can divide the second expression by the
first one and obtain (33).
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